1. |
Chen BB, Zhai Y, Huo YN, et al. A novel CEP290 disease-causing variant identified in a patient with leber congenital amaurosis using a medical diagnostic panel sequencing[J]. Ophthalmic Genet, 2022, 43(1): 97-103. DOI: 10.1080/13816810.2021.2004431.
|
2. |
Testa F, Sodi A, Signorini S, et al. Spectrum of disease severity in nonsyndromic patients with mutations in the CEP290 gene: a multicentric longitudinal study[J]. Invest Ophthalmol Vis Sci, 2021, 62(9): 1. DOI: 10.1167/iovs.62.9.1.
|
3. |
Coppieters F, Lefever S, Leroy BP, et al. CEP290, a gene with many faces: mutation overview and presentation of CEP290base[J]. Hum Mutat, 2010, 31(10): 1097-1108. DOI: 10.1002/humu.21337.
|
4. |
Yzer S, Hollander AI, Lopez I, et al. Ocular and extra-ocular features of patients with Leber congenital amaurosis and mutations in CEP290[J]. Mol Vis, 2012, 18: 412-425.
|
5. |
Littink KW, Pott JW, Collin RW, et al. A novel nonsense mutation in CEP290 induces exon skipping and leads to a relatively mild retinal phenotype[J]. Invest Ophthalmol Vis Sci, 2010, 51(7): 3646-3652. DOI: 10.1167/iovs.09-5074.
|
6. |
Vilaplana F, Ros A, Garcia B, et al. Clinical characteristics, imaging findings, and genetic results of a patient with CEP290-related cone-rod dystrophy[J]. Ophthalmic Genet, 2021, 42(4): 474-479. DOI: 10.1080/13816810.2021.1916827.
|
7. |
Ge Z, Bowles K, Goetz K, et al. NGS-based molecular diagnosis of 105 eyeGENE(®) probands with retinitis pigmentosa[J/OL]. Sci Rep, 2015, 5: 18287[2015-12-15]. https://pubmed.ncbi.nlm.nih.gov/26667666/. DOI: 10.1038/srep18287.
|
8. |
Vámos R, Külm M, Szabó V, et al. Leber congenital amaurosis: first genotyped Hungarian patients and report of 2 novel mutations in the CRB1 and CEP290 genes[J]. Eur J Ophthalmol, 2016, 26(1): 78-84. DOI: 10.5301/ejo.5000643.
|
9. |
Roosing S, Cremers F, Riemslag F, et al. A rare form of retinal dystrophy caused by hypomorphic nonsense mutations in CEP290[J]. Genes (Basel), 2017, 8(8): 208. DOI: 10.3390/genes8080208.
|
10. |
Coppieters F, Casteels I, Meire F, et al. Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes[J/OL]. Hum Mutat, 2010, 31(10): e1709-1766[2010-10-01]. https://pubmed.ncbi.nlm.nih.gov/20683928/. DOI: 10.1002/humu.21336.
|
11. |
Perrault I, Delphin N, Hanein S, et al. Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype[J]. Hum Mutat, 2007, 28(4): 416. DOI: 10.1002/humu.9485.
|
12. |
Guo Q, Li Y, Li J, et al. Phenotype heterogeneity and the association between visual acuity and outer retinal structure in a cohort of Chinese X-linked juvenile retinoschisis patients[J/OL]. Front Genet, 2022, 13: 832814[2022-05-04]. https://pubmed.ncbi.nlm.nih.gov/35309139/. DOI: 10.3389/fgene.2022.832814.
|
13. |
Fu L, Li Y, Yao S, et al. Autosomal recessive rod-cone dystrophy associated with compound heterozygous variants in ARL3 gene[J/OL]. Front Cell Dev Biol, 2021, 9: 635424[2021-03-04]. https://pubmed.ncbi.nlm.nih.gov/33748123/. DOI: 10.3389/fcell.2021.635424.
|
14. |
Zhang L, Li Y, Qin L, et al. Autosomal recessive retinitis pigmentosa associated with three novel REEP6 variants in Chinese population[J]. Genes (Basel), 2021, 12(4): 537. DOI: 10.3390/genes12040537.
|
15. |
Zhu Q, Rui X, Li Y, et al. Identification of four novel variants and determination of genotype-phenotype correlations for ABCA4 variants associated with inherited retinal degenerations[J/OL]. Front Cell Dev Biol, 2021, 9: 634843[2021-03-01]. https://pubmed.ncbi.nlm.nih.gov/33732702/. DOI: 10.3389/fcell.2021.634843.
|
16. |
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. DOI: 10.1038/gim.2015.30.
|
17. |
Pasadhika S, Fishman GA, Stone EM, et al. Differential macular morphology in patients with RPE65-, CEP290-, GUCY2D-, and AIPL1-related Leber congenital amaurosis[J]. Invest Ophthalmol Vis Sci, 2010, 51(5): 2608-2614. DOI: 10.1167/iovs.09-3734.
|
18. |
Skorczyk-Werner A, Niedziela Z, Stopa M, et al. Novel gene variants in Polish patients with Leber congenital amaurosis (LCA)[J]. Orphanet J Rare Dis, 2020, 15(1): 345. DOI: 10.1186/s13023-020-01634-y.
|
19. |
Valkenburg D, van Cauwenbergh C, Lorenz B, et al. Clinical characterization of 66 patients with congenital retinal disease due to the deep-intronic c. 2991+1655A>G mutation in CEP290[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4384-4391. DOI: 10.1167/iovs.18-24817.
|
20. |
Xu K, Xie Y, Sun T, et al. Genetic and clinical findings in a Chinese cohort with Leber congenital amaurosis and early onset severe retinal dystrophy[J]. Br J Ophthalmol, 2020, 104(7): 932-937. DOI: 10.1136/bjophthalmol-2019-314281.
|
21. |
Sheck L, Davies W, Moradi P, et al. Leber congenital amaurosis associated with mutations in CEP290, clinical phenotype, and natural history in preparation for trials of novel therapies[J]. Ophthalmology, 2018, 125(6): 894-903. DOI: 10.1016/j.ophtha.2017.12.013.
|
22. |
Jacobson SG, Cideciyan AV, Sumaroka A, et al. Outcome measures for clinical trials of Leber congenital amaurosis caused by the intronic mutation in the CEP290 gene[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2609-2622. DOI: 10.1167/iovs.17-21560.
|
23. |
Feldhaus B, Weisschuh N, Nasser F, et al. CEP290 mutation spectrum and delineation of the associated phenotype in a large German cohort: a monocentric study[J]. Am J Ophthalmol, 2020, 211: 142-150. DOI: 10.1016/j.ajo.2019.11.012.
|
24. |
Rafalska A, Tracewska AM, Turno-Krecicka A, et al. A mild phenotype caused by two novel compound heterozygous mutations in CEP290[J/OL]. Genes (Basel), 2020, 11(11): 1240[2020-10-22]. https://pubmed.ncbi.nlm.nih.gov/33105651/. DOI: 10.3390/genes11111240.
|
25. |
Barny I, Perrault I, Rio M, et al. Description of two siblings with apparently severe CEP290 mutations and unusually mild retinal disease unrelated to basal exon skipping or nonsense-associated altered splicing[J]. Adv Exp Med Biol, 2019, 1185: 189-195. DOI: 10.1007/978-3-030-27378-1_31.
|
26. |
Birtel J, Gliem M, Mangold E, et al. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa[J/OL]. PLoS One, 2018, 13(12): e207958[2018-12-13]. https://pubmed.ncbi.nlm.nih.gov/30543658/. DOI: 10.1371/journal.pone.0207958.
|
27. |
Preising MN, Schneider U, Friedburg C, et al. The phenotypic spectrum of ophthalmic changes in CEP290 mutations[J]. Klin Monbl Augenheilkd, 2019, 236(3): 244-252. DOI: 10.1055/a-0842-3250.
|
28. |
Mcanany JJ, Genead MA, Walia S, et al. Visual acuity changes in patients with leber congenital amaurosis and mutations in CEP290[J]. JAMA Ophthalmol, 2013, 131(2): 178-182. DOI: 10.1001/2013.jamaophthalmol.354.
|
29. |
Barny I, Perrault I, Michel C, et al. Basal exon skipping and nonsense-associated altered splicing allows bypassing complete CEP290 loss-of-function in individuals with unusually mild retinal disease[J]. Hum Mol Genet, 2018, 27(15): 2689-2702. DOI: 10.1093/hmg/ddy179.
|
30. |
Williamson M, Traboulsi E, Debenedictis M. Investigation of CEP290 genotype-phenotype correlations in a patient with retinitis pigmentosa, infertility, end-stage renal disease, and a novel mutation[J]. Ophthalmic Genet, 2020, 41(2): 171-174. DOI: 10.1080/13816810.2020.1744017.
|
31. |
Burnight ER, Wiley LA, Drack AV, et al. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype[J]. Gene Ther, 2014, 21(7): 662-672. DOI: 10.1038/gt.2014.39.
|