- Corresponding author: Sun Xiaodong, Email: xdsun@sjtu.edu.cn; Xu Xun, Email: drxuxun@sjtu.edu.cn;
Rapid development of recently emerging precision medicine techniques represented by gene therapy has brought hope for the treatment of rare blinding eye diseases such as inherited retinal diseases (IRDs) for which there was no effective treatment previously. Although the globally growth of clinical trials for IRDs has increased rapidly over the past decade, due to the highly genetic and clinical phenotypic heterogeneity, as well as limited data on epidemiology and natural history of the disease, along with severe loss of vision function of majority patients for which the established measurements may not be appropriate, such studies lack standard outcome measurements and endpoints to asses clinical meaningful effectiveness, posing great challenges in terms of study design and evaluation of treatment efficacy, as well as clinical practice application. At present, there is no systematic nor standardized guidance on safety measures, clinical outcomes and endpoints of visual function for clinical trial design in IRDs. Therefore, in order to standardize the validated evaluation of IRDs clinical efficacy outcome measurements and endpoints, the Fundus Disease Group of Chinese Medical Association Ophthalmology Branch and Fundus Disease Committee of Chinese Medical Doctor Association Ophthalmology Branch organized domestic experts to put forward consensus and recommendations on standardizing outcome measurements and endpoints for clinical study design in IRDs, aiming to advance the study design of IRDs natural history research and clinical trials and to effectively evaluate disease progression and intervention efficacy. Along with the development of medical science and clinical trials, relevant content will be improved and updated accordingly.
Citation: Fundus Disease Group of Chinese Medical Association Ophthalmology Branch, Fundus Disease Committee of Chinese Medical Doctor Association Ophthalmology Branch. Expert consensus and recommendations on the evaluation of visual function and outcome measurements in clinical trials for inherited retinal diseases in China. Chinese Journal of Ocular Fundus Diseases, 2022, 38(8): 626-635. doi: 10.3760/cma.j.cn511434-20220808-00443 Copy
1. | Schneider N, Sundaresan Y, Gopalakrishnan P, et al. Inherited retinal diseases: linking genes, disease-causing variants, and relevant therapeutic modalities[J/OL]. Prog Retin Eye Res, 2021, 101029[2021-11-25]. https://pubmed.ncbi.nlm.nih.gov/34839010/. DOI: 10.1016/j.preteyeres.2021.101029. |
2. | Garafalo AV, Cideciyan AV, Héon E, et al. Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives[J/OL]. Prog Retin Eye Res, 2020, 77: 100827[2019-12-30]. https://pubmed.ncbi.nlm.nih.gov/31899291/. DOI: 10.1016/j.preteyeres.2019.100827. |
3. | Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery[J]. Nat Rev Drug Discov, 2019, 18(5): 358-378. DOI: 10.1038/s41573-019-0012-9. |
4. | Food and Drug Administration. Human Gene Therapy for Retinal Disorders[EB/OL](2020-01-01)[2022-08-08]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/human-gene-therapy-retinal-disorders. |
5. | Csaky K, Ferris F 3rd, Chew EY, et al. Report from the NEI/FDA endpoints workshop on age-related macular degeneration and inherited retinal diseases[J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3456-3463. DOI: 10.1167/iovs.17-22339. |
6. | 国家药品监督管理局药品审评中心. 关于发布《罕见疾病药物临床研发技术指导原则》的通告(第71号)[EB/OL]. (2022-01-06)[2022-08-08]. https://www.cde.org.cn/main/news/viewInfoCommon/c4e1ef312a0a0c039a7a4ca55b91d4e8.Center for Drug Evaluation of the State Drug Administration. Circular on Issuing the "Technical Guidelines for Clinical Research and Development of Drugs for Rare Diseases" (No. 71)[EB/OL]. (2022-01-06)[2022-08-08]. https://www.cde.org.cn/main/news/viewInfoCommon/c4e1ef312a0a0c039a7a4ca55b91d4e8. |
7. | 汪枫桦, 陈洁琼, 孙晓东. 重视自然病程研究, 科学开展遗传性视网膜疾病的基因治疗[J]. 中华实验眼科杂志, 2021, 39(8): 665-669. DOI: 10.3760/cma.j.cn115989-20201007-00677.Wang FH, Chen JQ, Sun XD. Paying attention to the natural course of disease for a development of gene therapy of inherited retinal diseases[J]. Chin J Exp Ophthalmol, 2021, 39(8): 665-669. DOI: 10.3760/cma.j.cn115989-20201007-00677. |
8. | Thompson DA, Iannaccone A, Ali RR, et al. Advancing clinical trials for inherited retinal diseases: recommendations from the second monaciano symposium[J]. Transl Vis Sci Technol, 2020, 9(7): 2. DOI: 10.1167/tvst.9.7.2. |
9. | Chung DC, Birch DG, MacLaren RE. Endpoints for measuring efficacy in clinical trials for inherited retinal disease[J]. Int Ophthalmol Clin, 2021, 61(4): 63-78. DOI: 10.1097/IIO.0000000000000388. |
10. | 李杨. 遗传性眼病致病基因突变分析中应重视临床表型的评估[J]. 中华实验眼科杂志, 2017, 35(8): 673-676. DOI: 10.3760/cma.j.issn.2095-0160.2017.08.001.Li Y. Clinical phenotype assessment is very important in mutation analysis for patients with hereditary eye disease[J]. Chin J Exp Ophthalmol, 2017, 35(8): 673-676. DOI: 10.3760/cma.j.issn.2095-0160.2017.08.001. |
11. | Botto C, Rucli M, Tekinsoy MD, et al. Early and late stage gene therapy interventions for inherited retinal degenerations[J/OL]. Prog Retin Eye Res, 2022, 86: 100975[2021-05-29]. https://pubmed.ncbi.nlm.nih.gov/34058340/. DOI: 10.1016/j.preteyeres.2021.100975. |
12. | Georgiou M, Fujinami K, Michaelides M. Inherited retinal diseases: therapeutics, clinical trials and end points-a review[J]. Clin Exp Ophthalmol, 2021, 49(3): 270-288. DOI: 10.1111/ceo.13917. |
13. | Kumaran N, Moore AT, Weleber RG, et al. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions[J]. Br J Ophthalmol, 2017, 101(9): 1147-1154. DOI: 10.1136/bjophthalmol-2016-309975. |
14. | Daich Varela M, Georgiou M, Hashem SA, et al. Functional evaluation in inherited retinal disease[J/OL]. Br J Ophthalmol, 2021, 11: bjophthalmol-2021-319994[2021-11-25]. https://pubmed.ncbi.nlm.nih.gov/34824084/. DOI: 10.1136/bjophthalmol-2021-319994. |
15. | Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2017, 390(10097): 849-860. DOI: 10.1016/s0140-6736(17)31868-8. |
16. | Roman AJ, Cideciyan AV, Wu V, et al. Full-field stimulus testing: Role in the clinic and as an outcome measure in clinical trials of severe childhood retinal disease[J/OL]. Prog Retin Eye Res, 2022, 87: 101000[2021-08-28]. https://pubmed.ncbi.nlm.nih.gov/34464742/. DOI: 10.1016/j.preteyeres.2021.101000. |
17. | Chung DC, McCague S, Yu ZF, et al. Novel mobility test to assess functional vision in patients with inherited retinal dystrophies[J]. Clin Exp Ophthalmol, 2018, 46(3): 247-259. DOI: 10.1111/ceo.13022. |
18. | Kaiser PK. Prospective evaluation of visual acuity assessment: a comparison of snellen versus ETDRS charts in clinical practice (An AOS Thesis)[J]. Trans Am Ophthalmol Soc, 2009, 107: 311-324. |
19. | Csaky KG, Richman EA, Ferris FL 3rd. Report from the NEI/FDA Ophthalmic Clinical Trial Design and Endpoints Symposium[J]. Invest Ophthalmol Vis Sci, 2008, 49(2): 479-489. DOI: 10.1167/iovs.07-1132. |
20. | Chaplin PK, Bradford GE. A historical review of distance vision screening eye charts: what to toss, what to keep, and what to replace[J]. NASN Sch Nurse, 2011, 26(4): 221-228. DOI: 10.1177/1942602x11411094. |
21. | Sunness JS, Rubin GS, Broman A, et al. Low luminance visual dysfunction as a predictor of subsequent visual acuity loss from geographic atrophy in age-related macular degeneration[J]. Ophthalmology, 2008, 115(9): 1480-1488. DOI: 10.1016/j.ophtha.2008.03.009. |
22. | Alexander KR, Derlacki DJ, Fishman GA, et al. Acuity-luminance and foveal increment threshold functions in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 1991, 32(5): 1446-1454. |
23. | Fishman GA, Bozbeyoglu S, Massof RW, et al. Natural course of visual field loss in patients with type 2 Usher syndrome[J]. Retina, 2007, 27(5): 601-608. DOI: 10.1097/01.iae.0000246675.88911.2c. |
24. | Patel TP, Vongsachang H, Schilling A, et al. Spatial characteristics of peripheral visual islands in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2022, 63(2): 26. DOI: 10.1167/iovs.63.2.26. |
25. | Bittner AK, Iftikhar MH, Dagnelie G. Test-retest, within-visit variability of Goldmann visual fields in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 8042-8046. DOI: 10.1167/iovs.11-8321. |
26. | Racette L, Fischer M, Bebie H, et al. Visual field digest: a guide to perimetry and the octopus perimeter[M]. Köniz: Switz Haag-Streit AG, 2016: 289. |
27. | Schönbach EM, Janeschitz-Kriegl L, Strauss RW, et al. The progression of Stargardt disease using volumetric hill of vision analyses over 24 months: ProgStar Report No. 15[J]. Am J Ophthalmol, 2021, 230: 123-133. DOI: 10.1016/j.ajo.2021.04.015. |
28. | Georgiou M, Singh N, Kane T, et al. Long-term investigation of retinal function in patients with achromatopsia[J]. Invest Ophthalmol Vis Sci, 2020, 61(11): 38. DOI: 10.1167/iovs.61.11.38. |
29. | Duncan JL, Liang W, Maguire MG, et al. Baseline visual field findings in the RUSH2A study: associated factors and correlation with other measures of disease severity[J]. Am J Ophthalmol, 2020, 219: 87-100. DOI: 10.1016/j.ajo.2020.05.024. |
30. | Alahmadi BO, Omari AA, Abalem MF, et al. Contrast sensitivity deficits in patients with mutation-proven inherited retinal degenerations[J]. BMC Ophthalmol, 2018, 18(1): 313. DOI: 10.1186/s12886-018-0982-0. |
31. | Klein M, Birch DG. Psychophysical assessment of low visual function in patients with retinal degenerative diseases (RDDs) with the Diagnosys full-field stimulus threshold (D-FST)[J]. Doc Ophthalmol, 2009, 119(3): 217-224. DOI: 10.1007/s10633-009-9204-7. |
32. | Cideciyan AV, Jacobson SG, Drack AV, et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect[J]. Nat Med, 2019, 25(2): 225-228. DOI: 10.1038/s41591-018-0295-0. |
33. | Jacobson SG, Cideciyan AV, Ho AC, et al. Safety and improved efficacy signals following gene therapy in childhood blindness caused by GUCY2D mutations[J/OL]. iScience, 2021, 24(5): 102409[2021-04-11].https://pubmed.ncbi.nlm.nih.gov/33997691/. DOI: 10.1016/j.isci.2021.102409. |
34. | 国际临床视觉电生理学会. 临床全视野视网膜电图标准[J]. 中华眼科杂志, 2020, 56(9): 662-669. DOI: 10.3760/cma.j.cn112142-20200120-00033.International Society for Clinical Vision Electrophysiology. Clinical full-field electroretinography criteria[J]. Chin J Ophthalmol, 2020, 56(9): 662-669. DOI: 10.3760/cma.j.cn112142-20200120-00033. |
35. | Humayun MS, Dorn JD, da Cruz L, et al. Interim results from the international trial of second sight's visual prosthesis[J]. Ophthalmology, 2012, 119(4): 779-788. DOI: 10.1016/j.ophtha.2011.09.028. |
36. | Velikay-Parel M, Ivastinovic D, Koch M, et al. Repeated mobility testing for later artificial visual function evaluation[J]. J Neural Eng, 2007, 4(1): S102-107. DOI: 10.1088/1741-2560/4/1/S12. |
37. | Kumaran N, Ali RR, Tyler NA, et al. Validation of a vision-guided mobility assessment for RPE65-associated retinal dystrophy[J]. Transl Vis Sci Technol, 2020, 9(10): 5. DOI: 10.1167/tvst.9.10.5. |
38. | Birch DG, Locke KG, Wen Y, et al. Spectral-domain optical coherence tomography measures of outer segment layer progression in patients with X-linked retinitis pigmentosa[J]. JAMA Ophthalmol, 2013, 131(9): 1143-1150. DOI: 10.1001/jamaophthalmol.2013.4160. |
39. | Birch DG, Locke KG, Felius J, et al. Rates of decline in regions of the visual field defined by frequency-domain optical coherence tomography in patients with RPGR-mediated X-linked retinitis pigmentosa[J]. Ophthalmology, 2015, 122(4): 833-839. DOI: 10.1016/j.ophtha.2014.11.005. |
40. | Hariri AH, Zhang HY, Ho A, et al. Quantification of ellipsoid zone changes in retinitis pigmentosa using en face spectral domain-optical coherence tomography[J]. JAMA Ophthalmol, 2016, 134(6): 628-635. DOI: 10.1001/jamaophthalmol.2016.0502. |
41. | Strauss RW, Kong X, Ho A, et al. Progression of Stargardt disease as determined by fundus autofluorescence over a 12-month period: ProgStar Report No. 11[J]. JAMA Ophthalmol, 2019, 137(10): 1134-1145. DOI: 10.1001/jamaophthalmol.2019.2885. |
42. | Strauss RW, Muñoz B, Ho A, et al. Incidence of atrophic lesions in Stargardt disease in the progression of atrophy secondary to Stargardt disease (ProgStar) Study: Report No. 5[J]. JAMA Ophthalmol, 2017, 135(7): 687-695. DOI: 10.1001/jamaophthalmol.2017.1121. |
43. | Scoles D, Sulai YN, Langlo CS, et al. In vivo imaging of human cone photoreceptor inner segments[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4244-4251. DOI: 10.1167/iovs.14-14542. |
44. | Foote KG, Loumou P, Griffin S, et al. Relationship between foveal cone structure and visual acuity measured with adaptive optics scanning laser ophthalmoscopy in retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3385-3393. DOI: 10.1167/iovs.17-23708. |
45. | 国家药品监督管理局药品审评中心. 关于发布《患者报告结局在药物临床研发中应用的指导原则(试行)》的通告(第62号)[EB/OL]. (2022-01-04)[2022-08-08]. https://www.cde.org.cn/main/news/viewInfoCommon/c2f79c22e8678241b030c71523eb300c.Center for Drug Evaluation, State Drug Administration. Notice on Issuing the "Guiding Principles for the Application of Patient-Reported Outcomes in Drug Clinical Development (Trial)" (No. 62) (2022-01-04)[2022-08-08]. https://www.cde.org.cn/main/news/viewInfoCommon/c2f79c22e8678241b030c71523eb300c. |
46. | Mangione CM, Lee PP, Gutierrez PR, et al. Development of the 25-item National Eye Institute visual function questionnaire[J]. Arch Ophthalmol, 2001, 119(7): 1050-1058. DOI: 10.1001/archopht.119.7.1050. |
47. | MacLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial[J]. Lancet, 2014, 383(9923): 1129-1137. DOI: 10.1016/S0140-6736(13)62117-0. |
48. | Chan CW, Wong D, Lam CL, et al. Development of a Chinese version of the National Eye Institute Visual Function Questionnaire (CHI-VFQ-25) as a tool to study patients with eye diseases in Hong Kong[J]. Br J Ophthalmol, 2009, 93(11): 1431-1436. DOI: 10.1136/bjo.2009.158428. |
49. | Wolffsohn JS, Cochrane AL. Design of the low vision quality-of-life questionnaire (LVQOL) and measuring the outcome of low-vision rehabilitation[J]. Am J Ophthalmol, 2000, 130(6): 793-802. DOI: 10.1016/s0002-9394(00)00610-3. |
50. | Zou H, Zhang X, Xu X, et al. Development and psychometric tests of the Chinese-version Low Vision Quality of Life Questionnaire[J]. Qual Life Res, 2005, 14(6): 1633-1639. DOI: 10.1007/s11136-004-0026-5. |
51. | Lamoureux EL, Pallant JF, Pesudovs K, et al. The impact of Vision Impairment Questionnaire: an evaluation of its measurement properties using Rasch analysis[J]. Invest Ophthalmol Vis Sci, 2006, 47(11): 4732-4741. DOI: 10.1167/iovs.06-0220. |
52. | 国家药品监督管理局药品审评中心. 关于公开征求《以患者为中心的临床试验设计技术指导原则(征求意见稿)》意见的通知[EB/OL]. (2022-08-09)[2022-08-09]. https://www.cde.org.cn/main/news/viewInfoCommon/0cccaa1f5aeb73dcebf7d4d3e3e88b1c.Center for Drug Evaluation, State Drug Administration. Notice on public solicitation of “Comments on Technical Guidelines for Patient-Centered Clinical Trial Design (Draft)”[EB/OL]. (2022-08-09)[2022-08-09]. https://www.cde.org.cn/main/news/viewInfoCommon/0cccaa1f5aeb73dcebf7d4d3e3e88b1c. |
53. | Swissmedic and swissethics. Swissmedic position paper on Decentralised Clinical Trials with medicinal products updated[EB/OL](2021-11-01)[2022-08-08]. https://www.pharmavibes.co.uk/2021/11/01/swissmedic-position-paper-on-decentralised-clinical-trials-with-medicinal-products/#:~:text=On%204%20May%202021%2C%20the%20Danish%20Medicines%20Agency,integrity%20during%20DCTs.%20About%20Decentralised%20Clinical%20Trials%20%28DCTs%29. |
54. | Food and Drug Administration. Patient focused drug development collecting comprehensive and representative input [EB/OL](2021-06-01)[2022-08-08]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/patient-focused-drug-development-collecting-comprehensive-and-representative-input. |
- 1. Schneider N, Sundaresan Y, Gopalakrishnan P, et al. Inherited retinal diseases: linking genes, disease-causing variants, and relevant therapeutic modalities[J/OL]. Prog Retin Eye Res, 2021, 101029[2021-11-25]. https://pubmed.ncbi.nlm.nih.gov/34839010/. DOI: 10.1016/j.preteyeres.2021.101029.
- 2. Garafalo AV, Cideciyan AV, Héon E, et al. Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives[J/OL]. Prog Retin Eye Res, 2020, 77: 100827[2019-12-30]. https://pubmed.ncbi.nlm.nih.gov/31899291/. DOI: 10.1016/j.preteyeres.2019.100827.
- 3. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery[J]. Nat Rev Drug Discov, 2019, 18(5): 358-378. DOI: 10.1038/s41573-019-0012-9.
- 4. Food and Drug Administration. Human Gene Therapy for Retinal Disorders[EB/OL](2020-01-01)[2022-08-08]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/human-gene-therapy-retinal-disorders.
- 5. Csaky K, Ferris F 3rd, Chew EY, et al. Report from the NEI/FDA endpoints workshop on age-related macular degeneration and inherited retinal diseases[J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3456-3463. DOI: 10.1167/iovs.17-22339.
- 6. 国家药品监督管理局药品审评中心. 关于发布《罕见疾病药物临床研发技术指导原则》的通告(第71号)[EB/OL]. (2022-01-06)[2022-08-08]. https://www.cde.org.cn/main/news/viewInfoCommon/c4e1ef312a0a0c039a7a4ca55b91d4e8.Center for Drug Evaluation of the State Drug Administration. Circular on Issuing the "Technical Guidelines for Clinical Research and Development of Drugs for Rare Diseases" (No. 71)[EB/OL]. (2022-01-06)[2022-08-08]. https://www.cde.org.cn/main/news/viewInfoCommon/c4e1ef312a0a0c039a7a4ca55b91d4e8.
- 7. 汪枫桦, 陈洁琼, 孙晓东. 重视自然病程研究, 科学开展遗传性视网膜疾病的基因治疗[J]. 中华实验眼科杂志, 2021, 39(8): 665-669. DOI: 10.3760/cma.j.cn115989-20201007-00677.Wang FH, Chen JQ, Sun XD. Paying attention to the natural course of disease for a development of gene therapy of inherited retinal diseases[J]. Chin J Exp Ophthalmol, 2021, 39(8): 665-669. DOI: 10.3760/cma.j.cn115989-20201007-00677.
- 8. Thompson DA, Iannaccone A, Ali RR, et al. Advancing clinical trials for inherited retinal diseases: recommendations from the second monaciano symposium[J]. Transl Vis Sci Technol, 2020, 9(7): 2. DOI: 10.1167/tvst.9.7.2.
- 9. Chung DC, Birch DG, MacLaren RE. Endpoints for measuring efficacy in clinical trials for inherited retinal disease[J]. Int Ophthalmol Clin, 2021, 61(4): 63-78. DOI: 10.1097/IIO.0000000000000388.
- 10. 李杨. 遗传性眼病致病基因突变分析中应重视临床表型的评估[J]. 中华实验眼科杂志, 2017, 35(8): 673-676. DOI: 10.3760/cma.j.issn.2095-0160.2017.08.001.Li Y. Clinical phenotype assessment is very important in mutation analysis for patients with hereditary eye disease[J]. Chin J Exp Ophthalmol, 2017, 35(8): 673-676. DOI: 10.3760/cma.j.issn.2095-0160.2017.08.001.
- 11. Botto C, Rucli M, Tekinsoy MD, et al. Early and late stage gene therapy interventions for inherited retinal degenerations[J/OL]. Prog Retin Eye Res, 2022, 86: 100975[2021-05-29]. https://pubmed.ncbi.nlm.nih.gov/34058340/. DOI: 10.1016/j.preteyeres.2021.100975.
- 12. Georgiou M, Fujinami K, Michaelides M. Inherited retinal diseases: therapeutics, clinical trials and end points-a review[J]. Clin Exp Ophthalmol, 2021, 49(3): 270-288. DOI: 10.1111/ceo.13917.
- 13. Kumaran N, Moore AT, Weleber RG, et al. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions[J]. Br J Ophthalmol, 2017, 101(9): 1147-1154. DOI: 10.1136/bjophthalmol-2016-309975.
- 14. Daich Varela M, Georgiou M, Hashem SA, et al. Functional evaluation in inherited retinal disease[J/OL]. Br J Ophthalmol, 2021, 11: bjophthalmol-2021-319994[2021-11-25]. https://pubmed.ncbi.nlm.nih.gov/34824084/. DOI: 10.1136/bjophthalmol-2021-319994.
- 15. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2017, 390(10097): 849-860. DOI: 10.1016/s0140-6736(17)31868-8.
- 16. Roman AJ, Cideciyan AV, Wu V, et al. Full-field stimulus testing: Role in the clinic and as an outcome measure in clinical trials of severe childhood retinal disease[J/OL]. Prog Retin Eye Res, 2022, 87: 101000[2021-08-28]. https://pubmed.ncbi.nlm.nih.gov/34464742/. DOI: 10.1016/j.preteyeres.2021.101000.
- 17. Chung DC, McCague S, Yu ZF, et al. Novel mobility test to assess functional vision in patients with inherited retinal dystrophies[J]. Clin Exp Ophthalmol, 2018, 46(3): 247-259. DOI: 10.1111/ceo.13022.
- 18. Kaiser PK. Prospective evaluation of visual acuity assessment: a comparison of snellen versus ETDRS charts in clinical practice (An AOS Thesis)[J]. Trans Am Ophthalmol Soc, 2009, 107: 311-324.
- 19. Csaky KG, Richman EA, Ferris FL 3rd. Report from the NEI/FDA Ophthalmic Clinical Trial Design and Endpoints Symposium[J]. Invest Ophthalmol Vis Sci, 2008, 49(2): 479-489. DOI: 10.1167/iovs.07-1132.
- 20. Chaplin PK, Bradford GE. A historical review of distance vision screening eye charts: what to toss, what to keep, and what to replace[J]. NASN Sch Nurse, 2011, 26(4): 221-228. DOI: 10.1177/1942602x11411094.
- 21. Sunness JS, Rubin GS, Broman A, et al. Low luminance visual dysfunction as a predictor of subsequent visual acuity loss from geographic atrophy in age-related macular degeneration[J]. Ophthalmology, 2008, 115(9): 1480-1488. DOI: 10.1016/j.ophtha.2008.03.009.
- 22. Alexander KR, Derlacki DJ, Fishman GA, et al. Acuity-luminance and foveal increment threshold functions in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 1991, 32(5): 1446-1454.
- 23. Fishman GA, Bozbeyoglu S, Massof RW, et al. Natural course of visual field loss in patients with type 2 Usher syndrome[J]. Retina, 2007, 27(5): 601-608. DOI: 10.1097/01.iae.0000246675.88911.2c.
- 24. Patel TP, Vongsachang H, Schilling A, et al. Spatial characteristics of peripheral visual islands in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2022, 63(2): 26. DOI: 10.1167/iovs.63.2.26.
- 25. Bittner AK, Iftikhar MH, Dagnelie G. Test-retest, within-visit variability of Goldmann visual fields in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 8042-8046. DOI: 10.1167/iovs.11-8321.
- 26. Racette L, Fischer M, Bebie H, et al. Visual field digest: a guide to perimetry and the octopus perimeter[M]. Köniz: Switz Haag-Streit AG, 2016: 289.
- 27. Schönbach EM, Janeschitz-Kriegl L, Strauss RW, et al. The progression of Stargardt disease using volumetric hill of vision analyses over 24 months: ProgStar Report No. 15[J]. Am J Ophthalmol, 2021, 230: 123-133. DOI: 10.1016/j.ajo.2021.04.015.
- 28. Georgiou M, Singh N, Kane T, et al. Long-term investigation of retinal function in patients with achromatopsia[J]. Invest Ophthalmol Vis Sci, 2020, 61(11): 38. DOI: 10.1167/iovs.61.11.38.
- 29. Duncan JL, Liang W, Maguire MG, et al. Baseline visual field findings in the RUSH2A study: associated factors and correlation with other measures of disease severity[J]. Am J Ophthalmol, 2020, 219: 87-100. DOI: 10.1016/j.ajo.2020.05.024.
- 30. Alahmadi BO, Omari AA, Abalem MF, et al. Contrast sensitivity deficits in patients with mutation-proven inherited retinal degenerations[J]. BMC Ophthalmol, 2018, 18(1): 313. DOI: 10.1186/s12886-018-0982-0.
- 31. Klein M, Birch DG. Psychophysical assessment of low visual function in patients with retinal degenerative diseases (RDDs) with the Diagnosys full-field stimulus threshold (D-FST)[J]. Doc Ophthalmol, 2009, 119(3): 217-224. DOI: 10.1007/s10633-009-9204-7.
- 32. Cideciyan AV, Jacobson SG, Drack AV, et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect[J]. Nat Med, 2019, 25(2): 225-228. DOI: 10.1038/s41591-018-0295-0.
- 33. Jacobson SG, Cideciyan AV, Ho AC, et al. Safety and improved efficacy signals following gene therapy in childhood blindness caused by GUCY2D mutations[J/OL]. iScience, 2021, 24(5): 102409[2021-04-11].https://pubmed.ncbi.nlm.nih.gov/33997691/. DOI: 10.1016/j.isci.2021.102409.
- 34. 国际临床视觉电生理学会. 临床全视野视网膜电图标准[J]. 中华眼科杂志, 2020, 56(9): 662-669. DOI: 10.3760/cma.j.cn112142-20200120-00033.International Society for Clinical Vision Electrophysiology. Clinical full-field electroretinography criteria[J]. Chin J Ophthalmol, 2020, 56(9): 662-669. DOI: 10.3760/cma.j.cn112142-20200120-00033.
- 35. Humayun MS, Dorn JD, da Cruz L, et al. Interim results from the international trial of second sight's visual prosthesis[J]. Ophthalmology, 2012, 119(4): 779-788. DOI: 10.1016/j.ophtha.2011.09.028.
- 36. Velikay-Parel M, Ivastinovic D, Koch M, et al. Repeated mobility testing for later artificial visual function evaluation[J]. J Neural Eng, 2007, 4(1): S102-107. DOI: 10.1088/1741-2560/4/1/S12.
- 37. Kumaran N, Ali RR, Tyler NA, et al. Validation of a vision-guided mobility assessment for RPE65-associated retinal dystrophy[J]. Transl Vis Sci Technol, 2020, 9(10): 5. DOI: 10.1167/tvst.9.10.5.
- 38. Birch DG, Locke KG, Wen Y, et al. Spectral-domain optical coherence tomography measures of outer segment layer progression in patients with X-linked retinitis pigmentosa[J]. JAMA Ophthalmol, 2013, 131(9): 1143-1150. DOI: 10.1001/jamaophthalmol.2013.4160.
- 39. Birch DG, Locke KG, Felius J, et al. Rates of decline in regions of the visual field defined by frequency-domain optical coherence tomography in patients with RPGR-mediated X-linked retinitis pigmentosa[J]. Ophthalmology, 2015, 122(4): 833-839. DOI: 10.1016/j.ophtha.2014.11.005.
- 40. Hariri AH, Zhang HY, Ho A, et al. Quantification of ellipsoid zone changes in retinitis pigmentosa using en face spectral domain-optical coherence tomography[J]. JAMA Ophthalmol, 2016, 134(6): 628-635. DOI: 10.1001/jamaophthalmol.2016.0502.
- 41. Strauss RW, Kong X, Ho A, et al. Progression of Stargardt disease as determined by fundus autofluorescence over a 12-month period: ProgStar Report No. 11[J]. JAMA Ophthalmol, 2019, 137(10): 1134-1145. DOI: 10.1001/jamaophthalmol.2019.2885.
- 42. Strauss RW, Muñoz B, Ho A, et al. Incidence of atrophic lesions in Stargardt disease in the progression of atrophy secondary to Stargardt disease (ProgStar) Study: Report No. 5[J]. JAMA Ophthalmol, 2017, 135(7): 687-695. DOI: 10.1001/jamaophthalmol.2017.1121.
- 43. Scoles D, Sulai YN, Langlo CS, et al. In vivo imaging of human cone photoreceptor inner segments[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4244-4251. DOI: 10.1167/iovs.14-14542.
- 44. Foote KG, Loumou P, Griffin S, et al. Relationship between foveal cone structure and visual acuity measured with adaptive optics scanning laser ophthalmoscopy in retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3385-3393. DOI: 10.1167/iovs.17-23708.
- 45. 国家药品监督管理局药品审评中心. 关于发布《患者报告结局在药物临床研发中应用的指导原则(试行)》的通告(第62号)[EB/OL]. (2022-01-04)[2022-08-08]. https://www.cde.org.cn/main/news/viewInfoCommon/c2f79c22e8678241b030c71523eb300c.Center for Drug Evaluation, State Drug Administration. Notice on Issuing the "Guiding Principles for the Application of Patient-Reported Outcomes in Drug Clinical Development (Trial)" (No. 62) (2022-01-04)[2022-08-08]. https://www.cde.org.cn/main/news/viewInfoCommon/c2f79c22e8678241b030c71523eb300c.
- 46. Mangione CM, Lee PP, Gutierrez PR, et al. Development of the 25-item National Eye Institute visual function questionnaire[J]. Arch Ophthalmol, 2001, 119(7): 1050-1058. DOI: 10.1001/archopht.119.7.1050.
- 47. MacLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial[J]. Lancet, 2014, 383(9923): 1129-1137. DOI: 10.1016/S0140-6736(13)62117-0.
- 48. Chan CW, Wong D, Lam CL, et al. Development of a Chinese version of the National Eye Institute Visual Function Questionnaire (CHI-VFQ-25) as a tool to study patients with eye diseases in Hong Kong[J]. Br J Ophthalmol, 2009, 93(11): 1431-1436. DOI: 10.1136/bjo.2009.158428.
- 49. Wolffsohn JS, Cochrane AL. Design of the low vision quality-of-life questionnaire (LVQOL) and measuring the outcome of low-vision rehabilitation[J]. Am J Ophthalmol, 2000, 130(6): 793-802. DOI: 10.1016/s0002-9394(00)00610-3.
- 50. Zou H, Zhang X, Xu X, et al. Development and psychometric tests of the Chinese-version Low Vision Quality of Life Questionnaire[J]. Qual Life Res, 2005, 14(6): 1633-1639. DOI: 10.1007/s11136-004-0026-5.
- 51. Lamoureux EL, Pallant JF, Pesudovs K, et al. The impact of Vision Impairment Questionnaire: an evaluation of its measurement properties using Rasch analysis[J]. Invest Ophthalmol Vis Sci, 2006, 47(11): 4732-4741. DOI: 10.1167/iovs.06-0220.
- 52. 国家药品监督管理局药品审评中心. 关于公开征求《以患者为中心的临床试验设计技术指导原则(征求意见稿)》意见的通知[EB/OL]. (2022-08-09)[2022-08-09]. https://www.cde.org.cn/main/news/viewInfoCommon/0cccaa1f5aeb73dcebf7d4d3e3e88b1c.Center for Drug Evaluation, State Drug Administration. Notice on public solicitation of “Comments on Technical Guidelines for Patient-Centered Clinical Trial Design (Draft)”[EB/OL]. (2022-08-09)[2022-08-09]. https://www.cde.org.cn/main/news/viewInfoCommon/0cccaa1f5aeb73dcebf7d4d3e3e88b1c.
- 53. Swissmedic and swissethics. Swissmedic position paper on Decentralised Clinical Trials with medicinal products updated[EB/OL](2021-11-01)[2022-08-08]. https://www.pharmavibes.co.uk/2021/11/01/swissmedic-position-paper-on-decentralised-clinical-trials-with-medicinal-products/#:~:text=On%204%20May%202021%2C%20the%20Danish%20Medicines%20Agency,integrity%20during%20DCTs.%20About%20Decentralised%20Clinical%20Trials%20%28DCTs%29.
- 54. Food and Drug Administration. Patient focused drug development collecting comprehensive and representative input [EB/OL](2021-06-01)[2022-08-08]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/patient-focused-drug-development-collecting-comprehensive-and-representative-input.