1. |
Cheung CY, Tay WT, Ikram MK, et al. Retinal microvascular changes and risk of stroke: the Singapore Malay Eye Study[J]. Stroke, 2013, 44(9): 2402-2408. DOI: 10.1161/STROKEAHA.113.001738.
|
2. |
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志, 2018, 51(9): 666-682. DOI: 10.3760/cma.j.issn.1006-7876.2018.09.004.Chinese Society of Neurology, Chinese Stroke Society. Chinese guidelines for diagnosis and treatment of acute ischemic stroke 2018[J]. Chin J Neurol, 2018, 51(9): 666-682. DOI: 10.3760/cma.j.issn.1006-7876.2018.09.004.
|
3. |
Adams HP Jr, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment[J]. Stroke, 1993, 24(1): 35-41. DOI: 10.1161/01.str.24.1.35.
|
4. |
黄茜, 钟跃思, 蔡满航. 肝硬化患者的视网膜血管特征及其可能的诊断价值[J]. 新医学, 2021, 52(4): 255-259. DOI: 10.3969/j.issn.0253-9802.2021.04.006.Huang X, Zhong YS, Cai MH. Retinal vascular features and diagnostic values in patients with liver cirrhosis[J]. New Medicine, 2021, 52(4): 255-259. DOI: 10.3969/j.issn.0253-9802.2021.04.006.
|
5. |
Shao L, Zhang QL, Long TF, et al. Quantitative assessment of fundus tessellated density and associated factors in fundus images using artificial intelligencel[J]. Transl Vis Sci Techno, 2021, 10(9): 23. DOI: 10.1167/tvst.10.9.23.
|
6. |
Xu Y, Wang Y, Liu B, et al. The diagnostic accuracy of an intelligent and automated fundus disease image assessment system with lesion quantitative function (SmartEye) in diabetic patients[J]. BMC Ophthalmol, 2019, 19(1): 184. DOI: 10.1186/s12886-019-1196-9.
|
7. |
徐艺, 凌赛广, 董洲, 等. 一种基于计算机视觉的眼底图像质量评估系统的开发及应用[J]. 中华眼科杂志, 2020, 56(12): 920-927. DOI: 10.3760/cma.j.cn112142-20200409-00257.Xu Y, Ling SG, Dong Z, et al. Development and application of a fundus image quality assessment system based on computer vision technology[J]. Chin J Ophthalmol, 2020, 56(12): 920-927. DOI: 10.3760/cma.j.cn112142-20200409-00257.
|
8. |
Kipli K, Hoque ME, Lim LT, et al. A review on the extraction of quantitative retinal microvascular image feature[J/OL]. Comput Math Methods Med, 2018, 2018: 4019538[2018-07-02]. https://pubmed.ncbi.nlm.nih.gov/30065780/. DOI: 10.1155/2018/4019538.
|
9. |
Wong TY, Klein R, Couper DJ, et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study[J]. Lancet, 2001, 358(9288): 1134-1140. DOI: 10.1016/S0140-6736(01)06253-5.
|
10. |
Mitchell P, Wang JJ, Wong TY, et al. Retinal microvascular signs and risk of stroke and stroke mortality[J]. Neurology, 2005, 65(7): 1005-1009. DOI: 10.1212/01.wnl.0000179177.15900.ca.
|
11. |
Yatsuya H, Folsom AR, Wong TY, et al. Retinal microvascular abnormalities and risk of lacunar stroke: Atherosclerosis Risk in Communities Study[J]. Stroke, 2010, 41(7): 1349-1355. DOI: 10.1161/STROKEAHA.110.580837.
|
12. |
Ikram MK, de Jong FJ, Bos MJ, et al. Retinal vessel caliber and risk of stroke: the Rotterdam Study[J]. Neurology, 2006, 66(9): 1339-1343. DOI: 10.1212/01.wnl.0000210533.24338.ea.
|
13. |
Dumitrascu OM, Demaerschalk BM, Valencia Sanchez C, et al. Retinal microvascular abnormalities as surrogate markers of cerebrovascular ischemic disease: a meta-analysis[J]. J Stroke Cerebrovasc Dis, 2018, 27(7): 1960-1968. DOI: 10.1016/j.jstrokecerebrovasdis.2018.02.041.
|
14. |
Sasongko MB, Wong TY, Nguyen TT, et al. Retinal vascular tortuosity in persons with diabetes and diabetic retinopathy[J]. Diabetologia, 2011, 54(9): 2409-2416. DOI: 10.1007/s00125-011-2200-y.
|
15. |
Shi Y, Wardlaw JM. Update on cerebral small vessel disease: a dynamic whole-brain disease[J]. Stroke Vasc Neurol, 2016, 1(3): 83-92. DOI: 10.1136/svn-2016-000035.
|
16. |
杨振, 段俊国, 蹇文渊, 等. 视网膜血管弯曲度特征的应用研究进展[J]. 中医眼耳鼻喉杂志, 2019, 9(1): 35-39, 43. DOI: 10.3969/j.issn.1674-9006.2019.01.015.Yang Z, Duan JG, Jian WY, et al. Advances in the application of retinal vessel curvature characteristics[J]. J Chin Ophthalmol & Otorhinolaryngol, 2019, 9(1): 35-39, 43. DOI: 10.3969/j.issn.1674-9006.2019.01.015.
|
17. |
裴利, 蹇文渊, 罗圆, 等. 健康人视网膜血管参数变化研究[J]. 眼科新进展, 2019, 39(12): 1129-1132. DOI: 10.13389/j.cnki.rao.2019.0259.Pei L, Jian WY, Luo Y, et al. Retina vessel parameter difference of healthy people[J]. Rec Adv Ophthalmol, 2019, 39(12): 1129-1132. DOI: 10.13389/j.cnki.rao.2019.0259.
|
18. |
Cheung CY, Ong YT, Ikram MK, et al. Microvascular network alterations in the retina of patients with Alzheimer's disease[J]. Alzheimers Dement, 2014, 10(2): 135-142. DOI: 10.1016/j.jalz.2013.06.009.
|
19. |
Kawasaki R, Che Azemin MZ, Kumar DK, et al. Fractal dimension of the retinal vasculature and risk of stroke: a nested case-control study[J]. Neurology, 2011, 76(20): 1766-1767. DOI: 10.1212/WNL.0b013e31821a7d7d.
|
20. |
Lemmens S, Devulder A, Van Keer K, et al. Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker[J]. Front Neurosci, 2020, 14: 16. DOI: 10.3389/fnins.2020.00016.
|
21. |
Ong YT, De Silva DA, Cheung CY, et al. Microvascular structure and network in the retina of patients with ischemic stroke[J]. Stroke, 2013, 44(8): 2121-2127. DOI: 10.1161/STROKEAHA.113.001741.
|
22. |
Wang Y, Wang L, Zhou H, et al. Application research of artificial intelligence screening system for diabetic retinopathy[J/OL]. J Healthc Eng, 2022, 2022: 2185547[2022-01-17]. https://pubmed.ncbi.nlm.nih.gov/35083023/. DOI: 10.1155/2022/2185547.
|
23. |
Li F, Su Y, Lin F, et al. A deep-learning system predicts glaucoma incidence and progression using retinal photographs[J/OL]. J Clin Invest, 2022, 132(11): e157968[2022-06-01]. https://pubmed.ncbi.nlm.nih.gov/35642636/. DOI: 10.1172/JCI157968.
|
24. |
Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[J]. Nat Biomed Eng, 2018, 2(3): 158-164. DOI: 10.1038/s41551-018-0195-0.
|
25. |
Gupta VB, Chitranshi N, den Haan J, et al. Retinal changes in Alzheimer's disease- integrated prospects of imaging, functional and molecular advances[J/OL]. Prog Retin Eye Res, 2021, 82: 100899[2020-09-02]. https://pubmed.ncbi.nlm.nih.gov/32890742/. DOI: 10.1016/j.preteyeres.2020.100899.
|
26. |
Zhang K, Liu X, Xu J, et al. Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images[J]. Nat Biomed Eng, 2021, 5(6): 533-545. DOI: 10.1038/s41551-021-00745-6.
|
27. |
Lau AY, Mok V, Lee J, et al. Retinal image analytics detects white matter hyperintensities in healthy adults[J]. Ann Clin Transl Neurol, 2018, 6(1): 98-105. DOI: 10.1002/acn3.688.
|