1. |
Machemer R, Buettner H, Parel JM. Vitrectomy, a pars plana approach. Instrumentation[J]. Mod Probl Ophthalmol, 1972, 10: 172-177.
|
2. |
Machemer R, Parel JM, Buettner H. A new concept for vitreous surgery. Ⅰ. Instrumentation[J]. Am J Ophthalmol, 1972, 73(1): 1-7. DOI: 10.1016/0002-9394(72)90295-4.
|
3. |
Kasner D, Miller GR, Taylor WH, et al. Surgical treatment of amyloidosis of the vitreous[J]. Trans Am Acad Ophthalmol Otolaryngol, 1968, 72(3): 410-418.
|
4. |
Machemer R. The development of pars plana vitrectomy: a personal account[J]. Graefe's Arch Clin Exp Ophthalmol, 1995, 233(8): 453-468. DOI: 10.1007/BF00183425.
|
5. |
O'Malley C, Heintz RM. Vitrectomy via the pars plana-a new instrument system[J]. Trans Pac Coast Otoophthalmol Soc Annu Meet, 1972, 53: 121-137.
|
6. |
Thompson JT. Advantages and limitations of small gauge vitrectomy[J]. Surv Ophthalmol, 2011, 56(2): 162-172. DOI: 10.1016/j.survophthal.2010.08.003.
|
7. |
Van Kuijk FJ, Uwaydatt S, Godley BF. Self-sealing sclerotomies in pars plana vitrectomy[J]. Retina, 2001, 21(5): 547-550. DOI: 10.1097/00006982-200110000-00027.
|
8. |
Fujii GY, De Juan E Jr, Humayun MS, et al. A new 25-gauge instrument system for transconjunctival sutureless vitrectomy surgery[J]. Ophthalmology, 2002, 109(10): 1807-1813. DOI: 10.1016/s0161-6420(02)01179-x.
|
9. |
Fujii GY, De Juan E Jr, Humayun MS, et al. Initial experience using the transconjunctival sutureless vitrectomy system for vitreoretinal surgery[J]. Ophthalmology, 2002, 109(10): 1814-1820. DOI: 10.1016/s0161-6420(02)01119-3.
|
10. |
Eckardt C. Transconjunctival sutureless 23-gauge vitrectomy[J]. Retina, 2005, 25(2): 208-211. DOI: 10.1097/00006982-200502000-00015.
|
11. |
Oshima Y, Wakabayashi T, Sato T, et al. A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery[J]. Ophthalmology, 2010, 117(1): 93-102. DOI: 10.1016/j.ophtha.2009.06.043.
|
12. |
Osawa S, Oshima Y. Innovations in 27-gauge vitrectomy for sutureless microincision vitrectomy surgery: duty cycle control and dual-port cutters may allow wider use of ultrasmall-gauge vitrectomy[J]. Retina Today, 2014: 42-45.
|
13. |
Osawa S, Oshima Y. 27-Gauge vitrectomy[J]. Dev Ophthalmol, 2014, 54: 54-62. DOI: 10.1159/000360449.
|
14. |
Yoneda K, Morikawa K, Oshima Y, et al. Surgical outcomes of 27-gauge vitrectomy for a consecutive series of 163 eyes with variousvitreous diseases[J]. Retina, 2017, 37(11): 2130-2137. DOI: 10.1097/IAE.0000000000001442.
|
15. |
Gupta OP, Maguire JI, Eagle RC Jr, et al. The competency of pars plana vitrectomy incisions: a comparative histologic and spectrophotometric analysis[J]. Am J Ophthalmol, 2009, 147(2): 243-250. DOI: 10.1016/j.ajo.2008.08.025.
|
16. |
Charles S, Ho AC, Dugel PU, et al. Clinical comparison of 27-gauge and 23-gauge instruments on the outcomes of pars plana vitrectomy surgery for the treatment of vitreoretinal diseases[J]. Curr Opin Ophthalmol, 2020, 31(3): 185-191. DOI: 10.1097/ICU.0000000000000659.
|
17. |
Naruse Z, Shimada H, Mori R. Surgical outcomes of 27-gauge and 25-gauge vitrectomy day surgery for proliferative diabetic retinopathy[J]. Int Ophthalmol, 2019, 39(9): 1973-1980. DOI: 10.1007/s10792-018-1030-z.
|
18. |
Haas A, Seidel G, Steinbrugger I, et al. Twenty-three-gauge and 20-gauge vitrectomy in epiretinal membrane surgery[J]. Retina, 2010, 30(1): 112-116. DOI: 10.1097/IAE.0b013e3181b32ebf.
|
19. |
Yanyali A, Celik E, Horozoglu F, et al. 25-gauge transconjunctival sutureless pars plana vitrectomy[J] Eur J Ophthalmol, 2006, 16(1): 141-147. DOI: 10.1177/112067210601600123.
|
20. |
Kadonosono K, Yamakawa T, Uchio E, et al. Comparison of visual function after epiretinal membrane removal by 20-gauge and 25-gauge vitrectomy[J]. Am J Ophthalmol, 2006, 142(3): 513-515. DOI: 10.1016/j.ajo.2006.03.060.
|
21. |
Kovacević D, Antić IV, Valković A. Comparison of 23 gauge and 25 gauge PPV in the treatment of epiretinal membranes and macular holes[J]. Coll Antropol, 2014, 38(4): 1213-1216.
|
22. |
Rizzo S, Barca F. Twenty-seven-gauge sutureless microincision vitrectomy surgery: a new frontier?[J]. Retina Today, 2013: 37-40.
|
23. |
Jabbour J, Jabbour NM, Villers A, et al. 25-gauge vitrectomy[J]. Ophthalmology, 2007, 114(4): 827. DOI: 10.1016/j.ophtha.2006.12.009.
|
24. |
Peterson SR, Silva PA, Murtha TJ, et al. Cataract surgery in patients with diabetes: management strategies[J]. Semin Ophthalmol, 2018, 33(1): 75-82. DOI: 10.1080/08820538.2017.1353817.
|
25. |
Sharif-Kashani P, Nishida K, Pirouz Kavehpour H, et al. Effect of cut rates on fluidic behavior of chopped vitreous[J]. Retina, 2013, 33(1): 166-169. DOI: 10.1097/IAE.0b013e31825db758.
|
26. |
Girard LJ, Nieves R, Hawkins RS. Ultrasonic fragmentation for vitrectomy and associated surgical procedures[J]. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol, 1976, 81(3 Pt 1): 432-450.
|
27. |
Rizzo S, Fantoni G, Mucciolo DP, et al. Ultrasound in virecotomy: an alternative approach to traditional vitrectomy techniques[J]. Retina, 2020, 40(1): 24-32. DOI: 10.1097/IAE.0000000000002354.
|
28. |
Abulon DJ, Buboltz DC. Porcine vitreous flow behavior during high-speed vitrectomy up to 7500 cuts per minute[J]. Transl Vis Sci Technol, 2016, 5(1): 7. DOI: 10.1167/tvst.5.1.7.
|
29. |
Deuchler S, Knoch T, Papour A, et al. Pars plana vitrectomy-from suction cutting systems to ultrasound technology: vitesse-a new form of vitrectomy based on ultrasound technology[J]. Ophthalmologe, 2021, 118(7): 741-746. DOI: 10.1007/s00347-021-01377-6.
|
30. |
Stanga PE, Williams JI, Shaarawy SA, et al. First-in-human clinical study to investigate the effectiveness and safety of pars plana vitrrctomoy surgery using a new hypersonic technology[J]. Retina, 2020, 40(1): 16-23. DOI: 10.1097/IAE.0000000000002365.
|
31. |
Aznabaev BM, Dibaev TI, Mukhamadeev TR, et al. Twenty-five gauge ultrasonic vitrectomy: experimental and clinical performance analysis[J]. Retina, 2020, 40(7): 1443-1450. DOI: 10.1097/IAE.0000000000002863.
|
32. |
de Smet MD, Naus GJL, Faridpooya K, et al. Robotic-assisted surgery in ophthalmology[J]. Curr Opin Ophthalmol, 2018, 29(3): 248-253. DOI: 10.1097/ICU.0000000000000476.
|
33. |
Edwards TL, Xue K, Meenink HCM, et al. First-in-human study of the safety and viability of intraocular robotic surgery[J]. Nat Biomed Eng, 2018, 2: 649-656. DOI: 10.1038/s41551-018-0248-4.
|
34. |
Jinno M, Li G, Patel N, Iordachita I. An Integrated High-dexterity Cooperative Robotic Assistant for Intraocular Micromanipulation[J/OL]. IEEE Int Conf Robot Autom, 2021, 2021: 10.1109/icra48506.2021. 9562040[2021-06-01]. https://pubmed.ncbi.nlm.nih.gov/34721938/. DOI: 10.1109/icra48506.2021.9562040.
|
35. |
陈亦棋, 张超特, 洪明胜, 等. 辅助玻璃体视网膜显微手术机器人系统的研制及应用[J]. 中华实验眼科杂志, 2017, 35(1): 38-41. DOI: 10.3760/cma.j.issn.2095-0160.2017.01.008.Chen YQ, Zhao CT, Hong MS, et al. Development of cooperative robot-assistant surgery system for vitreoretinal microsurgery and its feasibility test in an animal model[J]. Chin J Pract Ophthalmol, 2017, 35(1): 38-41. DOI: 10.3760/cma.j.issn.2095-0160.2017.01.008.
|
36. |
Ran R, Shi W, Gao Y, et al. Super-fast in situ formation of hydrogels based on multi-arm functional polyethylene glycols as endotamponade substitutes[J]. J Mater Chem B, 2021, 9(44): 9162-9173. DOI: 10.1039/d1tb01825f.
|
37. |
Hayashi K, Okamoto F, Hoshi S, et al. Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body[J/OL]. Nature Biomedical Engineering, 2017, 2017: 0044[2017-03-09]. https://www.nature.com/articles/s41551-017-0044.
|
38. |
Liu Z, Liow SS, Lai SL, et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade[J]. Nat Biomed Eng, 2019, 3(8): 598-610. DOI: 10.1038/s41551-019-0382-7.
|
39. |
Baker AEG, Cui H, Ballios BG, et al. Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute[J/OL]. Biomaterials, 2021, 271: 120750[2021-04-04]. https://pubmed.ncbi.nlm.nih.gov/33725584/. DOI: 10.1016/j.biomaterials.2021.120750.
|
40. |
Wang T, Ran R, Ma Y, et al. Polymeric hydrogel as a vitreous substitute: current research, challenges, and future directions[J/OL]. Biomed Mater, 2021, 16(4): 042012[2021-06-11]. https://pubmed.ncbi.nlm.nih.gov/34038870/. DOI: 10.1088/1748-605X/ac058e.
|