1. |
He Y, Chen X, Tsui I, et al. Insights into the developing fovea revealed by imaging[J/OL]. Prog Retin Eye Res, 2022, 90: 101067[2022-05-17]. https://pubmed.ncbi.nlm.nih.gov/35595637/. DOI: 10.1016/j.preteyeres.2022.101067.
|
2. |
Hood DC, La Bruna S, Tsamis E, et al. Detecting glaucoma with only OCT: implications for the clinic, research, screening, and AI development[J/OL]. Prog Retin Eye Res, 2022, 90: 101052[2022-02-23]. https://pubmed.ncbi.nlm.nih.gov/35216894/. DOI: 10.1016/j.preteyeres.2022.101052.
|
3. |
陆方, 佘凯芩, 梁莉聪. 充分发挥光相干断层扫描及其血管成像的临床应用价值, 不断提升神经眼科疾病的诊治水平[J]. 中华眼底病杂志, 2021, 37(3): 169-172. DOI: 10.3760/cma.j.cn511434-20210316-00139.Lu F, She KQ, Liang LC. Applying optical coherence tomography and optical coherence tomography angiography to improve the diagnosis and treatment of neuro-ophthalmic diseases[J]. Chin J Ocul Fundus Dis, 2021, 37(3): 169-172. DOI: 10.3760/cma.j.cn511434-20210316-00139.
|
4. |
Fujimoto J, Swanson E. The development, commercialization, and impact of optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 1-13. DOI: 10.1167/iovs.16-19963.
|
5. |
Duker JS, Kaiser PK, Binder S, et al. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole[J]. Ophthalmology, 2013, 120(12): 2611-2619. DOI: 10.1016/j.ophtha.2013.07.042.
|
6. |
Stevenson W, Prospero Ponce CM, Agarwal DR, et al. Epiretinal membrane: optical coherence tomography-based diagnosis and classification[J]. Clin Ophthalmol, 2016, 10: 527-534. DOI: 10.2147/OPTH.S97722.
|
7. |
Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: current status and proposal for a new classification and grading system (ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115. DOI: 10.1016/j.preteyeres.2018.10.005.
|
8. |
Wu M, Chen W, Chen Q, et al. Noise reduction for SD-OCT using a structure-preserving domain transfer approach[J]. IEEE J Biomed Health Inform, 2021, 25(9): 3460-3472. DOI: 10.1109/JBHI.2021.3071421.
|
9. |
Chen Q, Niu S, Yuan S, et al. High-low reflectivity enhancement based retinal vessel projection for SD-OCT images[J/OL]. Med Phys, 2016, 43(10): 5464[2016-10-01]. https://pubmed.ncbi.nlm.nih.gov/27782707/. DOI: 10.1118/1.4962470.
|
10. |
Chen Q, Leng T, Niu S, et al. A false color fusion strategy for drusen and geographic atrophy visualization in optical coherence tomography images[J]. Retina, 2014, 34(12): 2346-2358. DOI: 10.1097/IAE.0000000000000249.
|
11. |
Li M, Chen Y, Ji Z, et al. Image projection network: 3D to 2D image segmentation in OCTA images[J]. IEEE Trans Med Imaging, 2020, 39(11): 3343-3354. DOI: 10.1109/TMI.2020.2992244.
|
12. |
Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131. DOI: 10.1016/j.cell.2018.02.010.
|
13. |
Li MC, Wang YX, Ji ZX, et al. A fast and robust fovea detectionframework for oct images based on fovealavascular zone segmentation[J/OL]. OSA Continuum 2020, 3(3): 214575452[2020-03-15]. https://www.semanticscholar.org/paper/Fast-and-robust-fovea-detection-framework-for-OCT-Li-Wang/f8bd9b24e39a3be08bfb60f5c36ec9c807acd2a0. DOI: 10.1364/osac.381120.
|
14. |
Yu C, Xie S, Niu S, et al. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks[J]. Med Phys, 2019, 46(10): 4502-4519. DOI: 10.1002/mp.13728.
|
15. |
Wu M, Cai X, Chen Q, et al. Geographic atrophy segmentation in SD-OCT images using synthesized fundus autofluorescence imaging[J/OL]. Comput Methods Programs Biomed, 2019, 182: 105101[2019-09-28]. https://pubmed.ncbi.nlm.nih.gov/31600644/. DOI: 10.1016/j.cmpb.2019.105101.
|
16. |
Chen Q, Niu S, Fang W, et al. Automated choroid segmentation of three-dimensional SD-OCT images by incorporating EDI-OCT images[J]. Comput Methods Programs Biomed, 2018, 158: 161-171. DOI: 10.1016/j.cmpb.2017.11.002.
|
17. |
Niu S, Yu C, Chen Q, et al. Multimodality analysis of hyper-reflective foci and hard exudates in patients with diabetic retinopathy[J/OL]. Sci Rep, 2017, 7(1): 1568[2017-05-08]. https://pubmed.ncbi.nlm.nih.gov/28484225/. DOI: 10.1038/s41598-017-01733-0.
|
18. |
Bogunovic H, Waldstein SM, Schlegl T, et al. Prediction of anti-VEGF treatment requirements in neovascular AMD using a machine learning approach[J]. Invest Ophthalmol Vis Sci, 2017, 58(7): 3240-3248. DOI: 10.1167/iovs.16-21053.
|