1. |
Gin TJ, Wu Z, Chew SK, et al. Quantitative analysis of the ellipsoid zone intensity in phenotypic variations of intermediate age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2079-2086. DOI: 10.1167/iovs.16-20105.
|
2. |
Chen H, Xia H, Qiu Z, et al. Correlation of optical intensity on optical coherence tomography and visual outcome in central retinal artery occlusion[J]. Retina, 2016, 36(10): 1964-1970. DOI: 10.1097/IAE.0000000000001017.
|
3. |
Guyon B, Elphege E, Flores M, et al. Retinal reflectivity measurement for cone impairment estimation and visual assessment after diabetic macular edema resolution (RECOVER-DME)[J]. Invest Ophthalmol Vis Sci, 2017, 58(14): 6241-6247. DOI: 10.1167/iovs.17-22380.
|
4. |
Borrelli E, Palmieri M, Viggiano P, et al. Photoreceptor damage in diabetic choroidopathy[J]. Retina, 2019, 40(6): 1062-1069. DOI: 10.1097/IAE.0000000000002538.
|
5. |
Cao D, Yang D, Huang Z, et al. Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy[J]. Acta diabetologica, 2018, 55(5): 469-477. DOI: 10.1007/s00592-018-1115-1.
|
6. |
中华医学会糖尿病学分会视网膜病变学组. 糖尿病视网膜病变防治专家共识[J]. 中华糖尿病杂志, 2018, 10(4): 241-247. DOI: 10.3760/cma.j.issn.1674-5809.2018.04.001.Retinopathy Group of Chinese Diabetes Society. Expert consensus in prevention of diabetic retinopathy[J]. Chin J Diabetes Mellitus, 2018, 10(4): 241-247. DOI: 10.3760/cma.j.issn.1674-5809.2018.04.001.
|
7. |
Gong Y, Chen LJ, Pang CP, et al. Ellipsoid zone optical intensity reduction as an early biomarker for retinitis pigmentosa[J/OL]. Acta ophthalmologica, 2021, 99(2): e215-e221[2020-07-23]. http://www.ncbi.nlm.nih.gov/pubmed/32701217. DOI: 10.1111/aos.14542.
|
8. |
Ra E, Ito Y, Kawano K, et al. Regeneration of photoreceptor outer segments after scleral buckling surgery for rhegmatogenous retinal detachment[J]. Am J Ophthalmol, 2017, 177: 17-26. DOI: 10.1016/j.ajo.2017.01.032.
|
9. |
Xia H, Ke X, Chen LJ, et al. Reduced photoreceptor outer segment layer thickness in mild commotio retinae without ellipsoid zone disruption[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(7): 1437-1442. DOI: 10.1007/s00417-020-04678-9.
|
10. |
Lin D, Luo X, Meng L, et al. Optical intensities of different compartments of subretinal fluid in acute Vogt-Koyanagi-Harada disease[J/OL]. PLoS One, 2016, 11(2): e0149376[2016-02-12]. http://www.ncbi.nlm.nih.gov/pubmed/26871896. DOI: 10.1371/journal.pone.0149376.
|
11. |
Barber AJ, Lieth E, Khin SA, et al. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin[J]. J Clin Invest, 1998, 102(4): 783-791. DOI: 10.1172/JCI2425.
|
12. |
Sachdeva MM. Retinal neurodegeneration in diabetes: an emerging concept in diabetic retinopathy[J]. Curr Diab Rep, 2021, 21(12): 65. DOI: 10.1007/s11892-021-01428-x.
|
13. |
Le D, Son T, Lim JI, et al. Quantitative optical coherence tomography reveals rod photoreceptor degeneration in early diabetic retinopathy[J]. Retina, 2022, 42(8): 1442-1449. DOI: 10.1097/IAE.0000000000003473.
|
14. |
Zhang F, Du Z, Zhang X, et al. Alterations of outer retinal reflectivity in diabetic patients without clinically detectable retinopathy[J/OL]. Graefe's Arch Clin Exp Ophthalmol, 2023, 2023: E1(2023-11-17)[2023-09-23]. http://www.ncbi.nlm.nih.gov/pubmed/37740747. DOI: 10.1007/s00417-023-06238-3. [published online ahead of print.
|
15. |
Hoang QV, Linsenmeier RA, Chung CL, et al. Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation[J]. Vis Neurosci, 2002, 19(4): 395-407. DOI: 10.1017/s0952523802194028.
|
16. |
Hood DC, Zhang X, Ramachandran R, et al. The inner segment/outer segment border seen on optical coherence tomography is less intense in patients with diminished cone function[J]. Invest Ophthalmol Vis Sci, 2011, 52(13): 9703-9709. DOI: 10.1167/iovs.11-8650.
|
17. |
朱鸿静, 张薇玮, 张雅纹, 等. 重度非增生型糖尿病视网膜病变患眼黄斑区及视盘血流密度和中心凹无血管区面积观察[J]. 中华眼底病杂志, 2021, 37(2): 98-103. DOI: 10.3760/cma.j.cn511434-20200518-00220.Zhu HJ, Zhang WW, Zhang YW, et al. The flow density of macular and optic disc and area of foveal avascular zone in severe nonproliferative diabetic retinopathy[J]. Chin Ocul Fundus Dis, 2021, 37(2): 98-103. DOI: 10.3760/cma.j.cn511434-20200518-00220.
|
18. |
Pournaras CJ, Rungger-Brändle E, Riva CE, et al. Regulation of retinal blood flow in health and disease[J]. Prog Retin Eye Res, 2008, 27(3): 284-330. DOI: 10.1016/j.preteyeres.2008.02.002.
|
19. |
Alder VA, Su EN, Yu DY, et al. Diabetic retinopathy: early functional changes[J]. Clin Exp Pharmacol Physiol, 1997, 24(9-10): 785-788. DOI: 10.1111/j.1440-1681.1997.tb02133.x.
|
20. |
Jung JJ, Lim SY, Chan X, et al. Correlation of diabetic disease severity to degree of quadrant asymmetry in en face OCTA metrics[J]. Invest Ophthalmol Vis Sci, 2022, 63(9): 12. DOI: 10.1167/iovs.63.9.12.
|
21. |
Birol G, Wang S, Budzynski E, et al. Oxygen distribution and consumption in the macaque retina[J]. Am J Physiol Heart Circ Physiol, 2007, 293(3): 1696-1704. DOI: 10.1152/ajpheart.00221.2007.
|
22. |
Scarinci F, Nesper PL, Fawzi AA. Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia[J]. Am J Ophthalmol, 2016, 168: 129-138. DOI: 10.1016/j.ajo.2016.05.002.
|
23. |
Yi J, Liu W, Chen S, et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation[J/OL]. Light Sci Appl, 2015, 4(9): e334[2015-09-25]. http://www.ncbi.nlm.nih.gov/pubmed/26658555. DOI: 10.1038/lsa.2015.107.
|
24. |
Ryu G, Kim I, Sagong M. Topographic analysis of retinal and choroidal microvasculature according to diabetic retinopathy severity using optical coherence tomography angiography[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 259(1): 61-68. DOI: 10.1007/s00417-020-04785-7.
|
25. |
Chen Q, Ma Q, Wu C, et al. Macular vascular fractal dimension in the deep capillary layer as an early indicator of microvascular loss for retinopathy in type 2 diabetic patients[J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3785-3794. DOI: 10.1167/iovs.17-21461.
|
26. |
Onishi AC, Nesper PL, Roberts PK, et al. Importance of considering the middle capillary plexus on OCT angiography in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2018, 59(5): 2167-2176. DOI: 10.1167/iovs.17-23304.
|
27. |
An D, Pulford R, Morgan WH, et al. Associations between capillary diameter, capillary density, and microaneurysms in diabetic retinopathy: a high-resolution confocal microscopy study[J]. Transl Vis Sci Technol, 2021, 10(2): 6. DOI: 10.1167/tvst.10.2.6.
|
28. |
Hammes HP. Pericytes and the pathogenesis of diabetic retinopathy[J]. Horm Metab Res, 2005, 37(Suppl 1): S39-43. DOI: 10.1055/s-2005-861361.
|
29. |
Raichle ME. Behind the scenes of functional brain imaging: a historical and physiological perspective[J]. Proc Natl Acad Sci USA, 1998, 95(3): 765-772. DOI: 10.1073/pnas.95.3.765.
|
30. |
Mclenachan S, Magno AL, Ramos D, et al. Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice[J]. Exp Eye Res, 2015, 138: 6-21. DOI: 10.1016/j.exer.2015.06.023.
|