- Fundus Disease Group of Ophthalmological Society of Chinese Medical Association, Fundus Disease Group of Ophthalmologist Branch of Chinese Medical Doctor Association;
- Corresponding author: Xu Xun, Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai 200080, China, Email: drxuxun@sjtu.edu.cn; Li Xiaoxin, Xiamen Eye Center of Xiamen University, Xiamen 361003, China, Email: dr_lixiaoxin@163.com;
Diabetic retinopathy (DR), a microvascular complication from diabetes, is the leading cause of blindness among working-age population. The blindness and low vision caused by DR has become a major public health issue. DR is a condition that occurs when diabetes affects the microvasculature and nerve tissue in the retina. Diabetic macular edema (DME), featured by thickened retina from capillary leakage in the macular area, mainly impacts central vision. The diagnostic assessment and treatment options of DR have improved dramatically in recent years. Recent advances in diagnostic assessment include the introduction of wide-field imaging and optical coherence tomography angiography, which have helped clinicians in the detection of certain biomarkers that can identify disease at an early stage and predict response to treatment in DME. Recently, treatment of DR and DME has been diversified: apart from the classic laser photocoagulation therapy, anti-vascular endothelial growth factor has become the first-line therapy for central-involved DME. In addition, steroids and micropulse laser have maintained a role in the management of DME in specific situations. Different combinations of medicine, surgery and laser treatments offered various options for patients, while making it more challenging for clinical doctors to propose the most appropriate solution. In such circumstances, Fundus Disease Group of Ophthalmological Society of Chinese Medical Association, Fundus Disease Group of Ophthalmologist Branch of Chinese Medical Doctor Association, and National Clinical Research Center for Eye Diseases incorporated the best updated knowledge and evidence and developed Evidence-based guidelines for diagnosis and treatment of diabetic retinopathy in China (2022). The guideline aims to standardize and offer a comprehensive guide for DR prevention, screening, referral and follow-up schedule, and appropriate management of DR in different stage, including DME, as well as systemic management and patient education.
Citation: . Evidence-based guidelines for diagnosis and treatment of diabetic retinopathy in China (2022). Chinese Journal of Ocular Fundus Diseases, 2023, 39(2): 99-124. doi: 10.3760/cma.j.cn511434-20230110-00018 Copy
1. | Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119[2021-12-06]. https://pubmed.ncbi.nlm.nih.gov/34879977/. DOI: 10.1016/j.diabres.2021.109119. |
2. | Tan GS, Cheung N, Simó R, et al. Diabetic macular oedema[J]. Lancet Diabetes Endocrinol, 2017, 5(2): 143-155. DOI: 10.1016/s2213-8587(16)30052-3. |
3. | Wong TY, Sun J, Kawasaki R, et al. Guidelines on diabetic eye care: The International Council of Ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings[J]. Ophthalmology, 2018, 125(10): 1608-1622. DOI: 10.1016/j.ophtha.2018.04.007. |
4. | 中华医学会眼科学会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2014年)[J]. 中华眼科杂志, 2014, 50(11): 851-865. DOI: 10.3760/cma.j.issn.0412-4081.2014.11.014.Fundus Disease Group, Ophthalmology Society of Chinese Medical Association. Guidelines for clinical diagnosis and treatment of diabetic retinopathy (2014)[J]. Chin J Ophthalmol, 2014, 50(11): 851-865. DOI: 10.3760/cma.j.issn.0412-4081.2014.11.014. |
5. | Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the management of diabetic macular edema by the European Society of Retina Specialists (EURETINA)[J]. Ophthalmologica, 2017, 237(4): 185-222. DOI: 10.1159/000458539. |
6. | Institute of Medicine (US) Committee on Standards for Developing Trustworthy Clinical Practice Guidelines. Clinical practice guidelines we can trust[M]. Washington DC: The National Academies Press, 2011: 18. |
7. | 蒋朱明, 詹思延, 贾晓巍, 等. 制订/修订《临床诊疗指南》的基本方法及程序[J]. 中华医学杂志, 2016, 96(4): 250-253. DOI: 10.3760/cma.j.issn.0376-2491.2016.04.004.Jiang ZM, Zhan SY, Jia XW, et al. Develop/revise the basic methods and procedures of the clinical treatment guidelines[J]. Natl Med J China, 2016, 96(4): 250-253. DOI: 10.3760/cma.j.issn.0376-2491.2016.04.004. |
8. | Alonso-Coello P, Oxman AD, Moberg J, et al. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: clinical practice guidelines[J/OL]. BMJ, 2016, 353: i2089[2016-06-30]. https://pubmed.ncbi.nlm.nih.gov/27365494/. DOI: 10.1136/bmj.i2089. |
9. | Higgins JPT, Savović J, Page MJ, et al. Assessing risk of bias in a randomized trial[M/OL]//Higgins JPT, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions. 6th ed. Cochrane, 2019. http://www.training.cochrane.org/handbook. |
10. | Stang A. Critical evaluation of the newcastle-ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9): 603-605. DOI: 10.1007/s10654-010-9491-z. |
11. | Alonso-Coello P, Schünemann HJ, Moberg J, et al. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: introduction[J/OL]. BMJ, 2016, 353: i2016[2016-06-28]. https://pubmed.ncbi.nlm.nih.gov/27353417/. DOI: 10.1136/bmj.i2016. |
12. | Schünemann HJ, Mustafa R, Brozek J, et al. GRADE guidelines: 16. GRADE evidence to decision frameworks for tests in clinical practice and public health[J]. J Clin Epidemiol, 2016, 76: 89-98. DOI: 10.1016/j.jclinepi.2016.01.032. |
13. | 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2010年版)[J]. 中国实用乡村医生杂志, 2012, 20(1): 81-117. DOI: 10.3969/j.issn.1672-7185.2012.04.001.Diabetics Branch of Chinese Medical Association. Chinese guidelines for the prevention and treatment of type 2 diabetes (2010 edition)[J]. Chinese Practical Journal of Rural Doctor, 2012, 20(1): 81-117. DOI: 10.3969/j.issn.1672-7185.2012.04.001. |
14. | Sattar N, Gill JM. Type 2 diabetes in migrant south asians: mechanisms, mitigation, and management[J]. Lancet Diabetes Endocrinol, 2015, 3(12): 1004-1016. DOI: 10.1016/s2213-8587(15)00326-5. |
15. | Leasher JL, Bourne RR, Flaxman SR, et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010[J]. Diabetes Care, 2016, 39(9): 1643-1649. DOI: 10.2337/dc15-2171. |
16. | Werfalli M, Engel ME, Musekiwa A, et al. The prevalence of type 2 diabetes among older people in africa: a systematic review[J]. Lancet Diabetes Endocrinol, 2016, 4(1): 72-84. DOI: 10.1016/s2213-8587(15)00363-0. |
17. | Foundation ID. Diabetes: facts and figures[EB/OL](2017-12-01)[2023-01-10]. http://www.Idf.Org/about-diabetes/facts-figures. |
18. | Pan XR, Yang WY, Li GW, et al. Prevalence of diabetes and its risk factors in china, 1994. National diabetes prevention and control cooperative group[J]. Diabetes Care, 1997, 20(11): 1664-1669. DOI: 10.2337/diacare.20.11.1664. |
19. | 李立明, 饶克勤, 孔灵芝, 等. 中国居民2002年营养与健康状况调查[J]. 中华流行病学杂志, 2005, 26(7): 478-484. DOI: 10.3760/j.issn:0254-6450.2005.07.004.Li LM, Yao KQ, Kong LZ, et al. A description on the Chinese national nutrition and health survey in 2002[J]. Chin J Epidemiol, 2005, 26(7): 478-484. DOI: 10.3760/j.issn:0254-6450.2005.07.004. |
20. | Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 362(12): 1090-1101. DOI: 10.1056/NEJMoa0908292. |
21. | Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9): 948-959. DOI: 10.1001/jama.2013.168118. |
22. | Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24): 2515-2523. DOI: 10.1001/jama.2017.7596. |
23. | Wang L, Peng W, Zhao Z, et al. Prevalence and treatment of diabetes in China, 2013-2018[J]. JAMA, 2021, 326(24): 2498-2506. DOI: 10.1001/jama.2021.22208. |
24. | Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3): 556-564. DOI: 10.2337/dc11-1909. |
25. | Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. DOI: 10.1016/j.ophtha.2021.04.027. |
26. | 邓宇轩, 叶雯青, 孙艳婷, 等. 中国糖尿病视网膜病变患病率的荟萃分析[J]. 中华医学杂志, 2020, 100(48): 3846-3852. DOI: 10.3760/cma.j.cn112137-20200925-02720.Deng YX, Ye WQ, Sun YT, et al. A meta-analysis of prevalence of diabetic retinopathy in China[J]. Natl Med J China, 2020, 100(48): 3846-3852. DOI: 10.3760/cma.j.cn112137-20200925-02720. |
27. | Sachdeva MM. Retinal neurodegeneration in diabetes: an emerging concept in diabetic retinopathy[J]. Curr Diab Rep, 2021, 21(12): 65. DOI: 10.1007/s11892-021-01428-x. |
28. | Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy[J/OL]. Prog Retin Eye Res, 2021, 83: 100919[2020-11-12]. https://pubmed.ncbi.nlm.nih.gov/33188897/. DOI: 10.1016/j.preteyeres.2020.100919. |
29. | Wilkinson CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682. DOI: 10.1016/s0161-6420(03)00475-5. |
30. | Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified airlie house classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group[J]. Ophthalmology, 1991, 98(5 Suppl): S786-806. |
31. | Singh RP, Elman MJ, Singh SK, et al. Advances in the treatment of diabetic retinopathy[J/OL]. J Diabetes Complications, 2019, 33(12): 107417[2019-08-15]. https://pubmed.ncbi.nlm.nih.gov/31669065/. DOI: 10.1016/j.jdiacomp.2019.107417. |
32. | Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report number 1. Early Treatment Diabetic Retinopathy Study Research Group[J]. Arch Ophthalmol, 1985, 103(12): 1796-1806. DOI: 10.1001/archopht.1985.01050120030015. |
33. | Mitchell P. Development and progression of diabetic eye disease in newcastle (1977-1984): rates and risk factors[J]. Aust N Z J Ophthalmol, 1985, 13(1): 39-44. DOI: 10.1111/j.1442-9071.1985.tb00397.x. |
34. | Klein R, Klein BE, Moss SE, et al. The wisconsin epidemiologic study of diabetic retinopathy. XIV. Ten-year incidence and progression of diabetic retinopathy[J]. Arch Ophthalmol, 1994, 112(9): 1217-1228. DOI: 10.1001/archopht.1994.01090210105023. |
35. | UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group[J]. BMJ, 1998, 317(7160): 703-713. DOI: 10.1136/bmj.317.7160.703. |
36. | Cohen O, Norymberg K, Neumann E, et al. Complication-free duration and the risk of development of retinopathy in elderly diabetic patients[J]. Arch Intern Med, 1998, 158(6): 641-644. DOI: 10.1001/archinte.158.6.641. |
37. | Wan Nazaimoon WM, Letchuman R, Noraini N, et al. Systolic hypertension and duration of diabetes mellitus are important determinants of retinopathy and microalbuminuria in young diabetics[J]. Diabetes Res Clin Pract, 1999, 46(3): 213-221. DOI: 10.1016/s0168-8227(99)00095-9. |
38. | Klein R, Knudtson MD, Lee KE, et al. The wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes[J]. Ophthalmology, 2008, 115(11): 1859-1868. DOI: 10.1016/j.ophtha.2008.08.023. |
39. | Voigt M, Schmidt S, Lehmann T, et al. Prevalence and progression rate of diabetic retinopathy in type 2 diabetes patients in correlation with the duration of diabetes[J]. Exp Clin Endocrinol Diabetes, 2018, 126(9): 570-576. DOI: 10.1055/s-0043-120570. |
40. | Xu J, Xu L, Wang YX, et al. Ten-year cumulative incidence of diabetic retinopathy. The Beijing Eye Study 2001/2011[J/OL]. PLoS One, 2014, 9(10): e111320[2014-10-27]. https://pubmed.ncbi.nlm.nih.gov/25347072/. DOI: 10.1371/journal.pone.0111320. |
41. | The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial[J]. Diabetes, 1995, 44(8): 968-983. |
42. | Kumari N, Bhargava M, Nguyen DQ, et al. Six-year incidence and progression of diabetic retinopathy in indian adults: The Singapore Indian Eye Study[J]. Br J Ophthalmol, 2019, 103(12): 1732-1739. DOI: 10.1136/bjophthalmol-2018-313282. |
43. | Tam VH, Lam EP, Chu BC, et al. Incidence and progression of diabetic retinopathy in Hong Kong Chinese with type 2 diabetes mellitus[J]. J Diabetes Complications, 2009, 23(3): 185-193. DOI: 10.1016/j.jdiacomp.2008.03.001. |
44. | Varma R, Bressler NM, Doan QV, et al. Prevalence of and risk factors for diabetic macular edema in the united states[J]. JAMA Ophthalmol, 2014, 132(11): 1334-1340. DOI: 10.1001/jamaophthalmol.2014.2854. |
45. | Park CY, Park SE, Bae JC, et al. Prevalence of and risk factors for diabetic retinopathy in Koreans with type Ⅱ diabetes: baseline characteristics of seoul metropolitan city-diabetes prevention program (SMC-DPP) participants[J]. Br J Ophthalmol, 2012, 96(2): 151-155. DOI: 10.1136/bjo.2010.198275. |
46. | Klein R, Sharrett AR, Klein BE, et al. The association of atherosclerosis, vascular risk factors, and retinopathy in adults with diabetes: the atherosclerosis risk in communities study[J]. Ophthalmology, 2002, 109(7): 1225-1234. DOI: 10.1016/s0161-6420(02)01074-6. |
47. | van Leiden HA, Dekker JM, Moll AC, et al. Blood pressure, lipids, and obesity are associated with retinopathy: the hoorn study[J]. Diabetes Care, 2002, 25(8): 1320-1325. DOI: 10.2337/diacare.25.8.1320. |
48. | Lee JH, Kim YA, Lee Y, et al. Association between interarm blood pressure differences and diabetic retinopathy in patients with type 2 diabetes[J/OL]. Diab Vasc Dis Res, 2020, 17(7): 1479164120945910[2020-07-01]. https://pubmed.ncbi.nlm.nih.gov/32746630/. DOI: 10.1177/1479164120945910. |
49. | Zhong Y, Yue S, Wu J, et al. Association of the serum total cholesterol to triglyceride ratio with diabetic retinopathy in chinese patients with type 2 diabetes: a community-based study[J]. Diabetes Ther, 2019, 10(2): 597-604. DOI: 10.1007/s13300-019-0579-5. |
50. | Idiculla J, Nithyanandam S, Joseph M, et al. Serum lipids and diabetic retinopathy: a cross-sectional study[J]. Indian J Endocrinol Metab, 2012, 16(Suppl 2): S492-494. DOI: 10.4103/2230-8210.104142. |
51. | Azad N, Bahn GD, Emanuele NV, et al. Association of blood glucose control and lipids with diabetic retinopathy in the veterans affairs diabetes trial (VADT)[J]. Diabetes Care, 2016, 39(5): 816-822. DOI: 10.2337/dc15-1897. |
52. | Lyons TJ, Jenkins AJ, Zheng D, et al. Diabetic retinopathy and serum lipoprotein subclasses in the dcct/edic cohort[J]. Invest Ophthalmol Vis Sci, 2004, 45(3): 910-918. DOI: 10.1167/iovs.02-0648. |
53. | Lopes-Virella MF, Baker NL, Hunt KJ, et al. High concentrations of age-LDL and oxidized LDL in circulating immune complexes are associated with progression of retinopathy in type 1 diabetes[J]. Diabetes Care, 2012, 35(6): 1333-1340. DOI: 10.2337/dc11-2040. |
54. | Shi R, Zhao L, Wang F, et al. Effects of lipid-lowering agents on diabetic retinopathy: a meta-analysis and systematic review[J]. Int J Ophthalmol, 2018, 11(2): 287-295. DOI: 10.18240/ijo.2018.02.18. |
55. | Kang EY, Chen TH, Garg SJ, et al. Association of statin therapy with prevention of vision-threatening diabetic retinopathy[J]. JAMA Ophthalmol, 2019, 137(4): 363-371. DOI: 10.1001/jamaophthalmol.2018.6399. |
56. | Eliasson B. Cigarette smoking and diabetes[J]. Prog Cardiovasc Dis, 2003, 45(5): 405-413. DOI: 10.1053/pcad.2003.00103. |
57. | Mühlhauser I, Bender R, Bott U, et al. Cigarette smoking and progression of retinopathy and nephropathy in type 1 diabetes[J]. Diabet Med, 1996, 13(6): 536-543. DOI: 10.1002/(sici)1096-9136(199606)13:6<536::Aid-dia110>3.0.Co;2-j. |
58. | Wannamethee SG, Shaper AG, Perry IJ. Smoking as a modifiable risk factor for type 2 diabetes in middle-aged men[J]. Diabetes Care, 2001, 24(9): 1590-1595. DOI: 10.2337/diacare.24.9.1590. |
59. | Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type Ⅱ diabetes over 6 years from diagnosis[J]. Diabetologia, 2001, 44(2): 156-163. DOI: 10.1007/s001250051594. |
60. | Li R, Zhang P, Barker LE, et al. Cost-effectiveness of interventions to prevent and control diabetes mellitus: a systematic review[J]. Diabetes Care, 2010, 33(8): 1872-1894. DOI: 10.2337/dc10-0843. |
61. | 李立新, 黎晓新, 胡雨桐, 等. 糖尿病视网膜病变与全身因素的相关分析[J]. 中华眼科杂志, 1992, 28(4): 228-230.Li LX, Li XX, Hu YT, et al. Correlation analysis between diabetic retinopathy and systemic factors[J]. Chin J Ophthalmol, 1992, 28(4): 228-230. |
62. | Romero-Aroca P, Baget-Bernaldiz M, Navarro-Gil R, et al. Glomerular filtration rate and/or ratio of urine albumin to creatinine as markers for diabetic retinopathy: a ten-year follow-up study[J/OL]. J Diabetes Res, 2018, 2018: 5637130[2018-02-26]. https://pubmed.ncbi.nlm.nih.gov/29682579/. DOI: 10.1155/2018/5637130. |
63. | Klein BE, Moss SE, Klein R. Effect of pregnancy on progression of diabetic retinopathy[J]. Diabetes Care, 1990, 13(1): 34-40. DOI: 10.2337/diacare.13.1.34. |
64. | Rosenbloom AL, Silverstein JH, Amemiya S, et al. Type 2 diabetes in children and adolescents[J]. Pediatr Diabetes, 2009, 10 Suppl 12: S17-32. DOI: 10.1111/j.1399-5448.2009.00584.x. |
65. | Imperatore G, Hanson RL, Pettitt DJ, et al. Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group[J]. Diabetes, 1998, 47(5): 821-830. DOI: 10.2337/diabetes.47.5.821. |
66. | Looker HC, Nelson RG, Chew E, et al. Genome-wide linkage analyses to identify loci for diabetic retinopathy[J]. Diabetes, 2007, 56(4): 1160-1166. DOI: 10.2337/db06-1299. |
67. | Hu C, Zhang R, Yu W, et al. CPVL/CHN2 genetic variant is associated with diabetic retinopathy in chinese type 2 diabetic patients[J]. Diabetes, 2011, 60(11): 3085-3089. DOI: 10.2337/db11-0028. |
68. | Jin L, Wang T, Jiang S, et al. The association of a genetic variant in SCAF8-CNKSR3 with diabetic kidney disease and diabetic retinopathy in a chinese population[J/OL]. J Diabetes Res, 2017, 2017: 6542689[2017-03-19]. https://pubmed.ncbi.nlm.nih.gov/28401168/. DOI: 10.1155/2017/6542689. |
69. | Peng D, Wang J, Zhang R, et al. Common variants in or near ZNRF1, COLEC12, SCYL1BP1 and API5 are associated with diabetic retinopathy in Chinese patients with type 2 diabetes[J]. Diabetologia, 2015, 58(6): 1231-1238. DOI: 10.1007/s00125-015-3569-9. |
70. | Zhang J, Zhang M, Zhao H, et al. Identification of proliferative diabetic retinopathy-associated genes on the protein-protein interaction network by using heat diffusion algorithm[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(10): 165794[2020-10-01]. https://pubmed.ncbi.nlm.nih.gov/32278010/. DOI: 10.1016/j.bbadis.2020.165794. |
71. | Wang H, Li S, Wang C, et al. Plasma and vitreous metabolomics profiling of proliferative diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2022, 63(2): 17. DOI: 10.1167/iovs.63.2.17. |
72. | Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group[J]. Ophthalmology, 1995, 102(4): 647-661. DOI: 10.1016/s0161-6420(95)30973-6. |
73. | Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group[J]. Lancet, 1998, 352(9131): 837-853. DOI: 10.1016/S0140-6736(98)07019-6. |
74. | ACCORD Study Group, ACCORD Eye Study Group, Chew EY, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes[J]. N Engl J Med, 2010, 363(3): 233-244. DOI: 10.1056/NEJMoa1001288. |
75. | Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Eye Study Group and the Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Study Group. Persistent effects of intensive glycemic control on retinopathy in type 2 diabetes in the action to control cardiovascular risk in diabetes (ACCORD) follow-on study[J]. Diabetes Care, 2016, 39(7): 1089-1100. DOI: 10.2337/dc16-0024. |
76. | Aiello LP, DCCT/EDIC Research Group. Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study[J]. Diabetes Care, 2014, 37(1): 17-23. DOI: 10.2337/dc13-2251. |
77. | Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group, Lachin JM, White NH, et al. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC[J]. Diabetes, 2015, 64(2): 631-642. DOI: 10.2337/db14-0930. |
78. | Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J]. N Engl J Med, 1993, 329(14): 977-986. DOI: 10.1056/nejm199309303291401. |
79. | Beulens JW, Patel A, Vingerling JR, et al. Effects of blood pressure lowering and intensive glucose control on the incidence and progression of retinopathy in patients with type 2 diabetes mellitus: a randomised controlled trial[J]. Diabetologia, 2009, 52(10): 2027-2036. DOI: 10.1007/s00125-009-1457-x. |
80. | Chew EY, Davis MD, Danis RP, et al. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Eye Study[J]. Ophthalmology, 2014, 121(12): 2443-2451. DOI: 10.1016/j.ophtha.2014.07.019. |
81. | Giorgino F, Home PD, Tuomilehto J. Glucose control and vascular outcomes in type 2 diabetes: is the picture clear?[J]. Diabetes Care, 2016, 39(Suppl 2): S187-195. DOI: 10.2337/dcS15-3023. |
82. | Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes[J]. N Engl J Med, 2008, 358(24): 2545-2559. DOI: 10.1056/NEJMoa0802743. |
83. | ADVANCE Collaborative Group. ADVANCE-Action in Diabetes and Vascular Disease: patient recruitment and characteristics of the study population at baseline[J]. Diabet Med, 2005, 22(7): 882-888. DOI: 10.1111/j.1464-5491.2005.01596.x. |
84. | Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes[J]. N Engl J Med, 2009, 360(2): 129-139. DOI: 10.1056/NEJMoa0808431. |
85. | 李淑婷, 王相宁, 吴强. 糖尿病视网膜病变筛查意义及操作指南[J]. 中华眼底病杂志, 2019, 35(2): 200-206. DOI: 10.3760/cma.j.issn.1005-1015.2019.02.019.Li ST, Wang XN, Wu Q. A review of guidelines for diabetic retinopathy screening[J]. Chin J Ocul Fundus Dis, 2019, 35(2): 200-206. DOI: 10.3760/cma.j.issn.1005-1015.2019.02.019. |
86. | 中华医学会糖尿病学分会视网膜病变学组. 糖尿病相关眼病防治多学科中国专家共识(2021年版)[J]. 中华糖尿病杂志, 2021, 13(11): 1026-1042. DOI: 10.3760/cma.j.cn115791-20211006-00534.Diabetic Retinopathy Group of Chinese Diabetes Society. Chinese multidisciplinary expert consensus on the prevention and treatment of diabetic eye disease (2021 edition)[J]. Chin J Diabetes Mellitus, 2021, 13(11): 1026-1042. DOI: 10.3760/cma.j.cn115791-20211006-00534. |
87. | Heath V. Diabetes: progression of diabetic retinopathy found to be a potential risk during pregnancy[J]. Nat Rev Endocrinol, 2010, 6(7): 354. DOI: 10.1038/nrendo.2010.73. |
88. | Shen HQ, Wang J, Niu T, et al. Dynamic versus static ultra-widefield fluorescein angiography in eyes with diabetic retinopathy: a pilot prospective cross-sectional study[J]. Int J Ophthalmol, 2021, 14(3): 409-415. DOI: 10.18240/ijo.2021.03.13. |
89. | 中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病专业委员会. 我国糖尿病视网膜病变筛查的图像采集及阅片指南(2017年)[J]. 中华眼科杂志, 2017, 53(12): 890-896. DOI: 10.3760/cma.j.issn.0412-4081.2017.12.003.Fundus Diseases Group of Ophthalmology Branch of Chinese Medical Association, fundus diseases Professional Committee of Ophthalmology Branch of Chinese Medical Doctor Association. Guidelines for image collection and screening for diabetic retinopathy in China (2017)[J]. Chin J Ophthalmol, 2017, 53(12): 890-896. DOI: 10.3760/cma.j.issn.0412-4081.2017.12.003. |
90. | Aiello LP, Odia I, Glassman AR, et al. Comparison of early treatment diabetic retinopathy study standard 7-field imaging with ultrawide-field imaging for determining severity of diabetic retinopathy[J]. JAMA Ophthalmol, 2019, 137(1): 65-73. DOI: 10.1001/jamaophthalmol.2018.4982. |
91. | Silva PS, Cavallerano JD, Sun JK, et al. Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity[J]. Ophthalmology, 2013, 120(12): 2587-2595. DOI: 10.1016/j.ophtha.2013.05.004. |
92. | Silva PS, Cavallerano JD, Sun JK, et al. Nonmydriatic ultrawide field retinal imaging compared with dilated standard 7-field 35-mm photography and retinal specialist examination for evaluation of diabetic retinopathy[J]. Am J Ophthalmol, 2012, 154(3): 549-559. DOI: 10.1016/j.ajo.2012.03.019. |
93. | Rasmussen ML, Broe R, Frydkjaer-Olsen U, et al. Comparison between early treatment diabetic retinopathy study 7-field retinal photos and non-mydriatic, mydriatic and mydriatic steered widefield scanning laser ophthalmoscopy for assessment of diabetic retinopathy[J]. J Diabetes Complications, 2015, 29(1): 99-104. DOI: 10.1016/j.jdiacomp.2014.08.009. |
94. | Kernt M, Hadi I, Pinter F, et al. Assessment of diabetic retinopathy using nonmydriatic ultra-widefield scanning laser ophthalmoscopy (Optomap) compared with ETDRS 7-field stereo photography[J]. Diabetes Care, 2012, 35(12): 2459-2463. DOI: 10.2337/dc12-0346. |
95. | Price LD, Au S, Chong NV. Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy[J]. Clin Ophthalmol, 2015, 9: 527-531. DOI: 10.2147/opth.S79448. |
96. | 史雪辉, 张丛, 魏文斌. 关注糖尿病黄斑水肿的光学相干断层扫描分型及相关影像特征[J]. 中华眼科医学杂志(电子版), 2021, 11(1): 1-7. DOI: 10.3877/cma.j.issn.2095-2007.2021.01.001.Shi XH, Zhang C, Wei WB. Pay attention to OCT-based classification and features of diabetic macular edema[J]. Chin J Ophthal Med (Electronic Edition), 2021, 11(1): 1-7. DOI: 10.3877/cma.j.issn.2095-2007.2021.01.001. |
97. | Shen Y, Liu K, Xu X. Correlation between visual function and photoreceptor integrity in diabetic macular edema: spectral-domain optical coherence tomography[J]. Curr Eye Res, 2016, 41(3): 391-399. DOI: 10.3109/02713683.2015.1019003. |
98. | Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy[J]. Vision Res, 2017, 139: 93-100. DOI: 10.1016/j.visres.2017.03.013. |
99. | Gerendas BS, Prager S, Deak G, et al. Predictive imaging biomarkers relevant for functional and anatomical outcomes during ranibizumab therapy of diabetic macular oedema[J]. Br J Ophthalmol, 2018, 102(2): 195-203. DOI: 10.1136/bjophthalmol-2017-310483. |
100. | Reznicek L, Cserhati S, Seidensticker F, et al. Functional and morphological changes in diabetic macular edema over the course of anti-vascular endothelial growth factor treatment[J/OL]. Acta Ophthalmol, 2013, 91(7): e529-536[2013-05-07]. https://pubmed.ncbi.nlm.nih.gov/23647578/. DOI: 10.1111/aos.12153. |
101. | Karst SG, Lammer J, Mitsch C, et al. Detailed analysis of retinal morphology in patients with diabetic macular edema (DME) randomized to ranibizumab or triamcinolone treatment[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(1): 49-58. DOI: 10.1007/s00417-017-3828-1. |
102. | Vujosevic S, Torresin T, Berton M, et al. Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities[J]. Am J Ophthalmol, 2017, 181: 149-155. DOI: 10.1016/j.ajo.2017.06.026. |
103. | Sophie R, Lu N, Campochiaro PA. Predictors of functional and anatomic outcomes in patients with diabetic macular edema treated with ranibizumab[J]. Ophthalmology, 2015, 122(7): 1395-1401. DOI: 10.1016/j.ophtha.2015.02.036. |
104. | Lammer J, Bolz M, Baumann B, et al. Detection and analysis of hard exudates by polarization-sensitive optical coherence tomography in patients with diabetic maculopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(3): 1564-1571. DOI: 10.1167/iovs.13-13539. |
105. | Vujosevic S, Bini S, Torresin T, et al. Hyperreflective retinal spots in normal and diabetic eyes: B-scan and en face spectral domain optical coherence tomography evaluation[J]. Retina, 2017, 37(6): 1092-1103. DOI: 10.1097/iae.0000000000001304. |
106. | DDe Benedetto U, Sacconi R, Pierro L, et al. Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy[J]. Retina, 2015, 35(3): 449-453. DOI: 10.1097/iae.0000000000000336. |
107. | Murakami T, Suzuma K, Uji A, et al. Association between characteristics of foveal cystoid spaces and short-term responsiveness to ranibizumab for diabetic macular edema[J]. Jpn J Ophthalmol, 2018, 62(3): 292-301. DOI: 10.1007/s10384-018-0575-8. |
108. | Hwang HS, Chae JB, Kim JY, et al. Association between hyperreflective dots on spectral-domain optical coherence tomography in macular edema and response to treatment[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5958-5967. DOI: 10.1167/iovs.17-22725. |
109. | Kang JW, Chung H, Chan Kim H. Correlation of optical coherence tomographic hyperreflective foci with visual outcomes in different patterns of diabetic macular edema[J]. Retina, 2016, 36(9): 1630-1639. DOI: 10.1097/iae.0000000000000995. |
110. | Ashraf M, Souka A, Adelman R. Predicting outcomes to anti-vascular endothelial growth factor (VEGF) therapy in diabetic macular oedema: a review of the literature[J]. Br J Ophthalmol, 2016, 100(12): 1596-1604. DOI: 10.1136/bjophthalmol-2016-308388. |
111. | Yeung L, Lima VC, Garcia P, et al. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema[J]. Ophthalmology, 2009, 116(6): 1158-1167. DOI: 10.1016/j.ophtha.2008.12.063. |
112. | Moein HR, Novais EA, Rebhun CB, et al. Optical coherence tomography angiography to detect macular capillary ischemia in patients with inner retinal changes after resolved diabetic macular edema[J]. Retina, 2018, 38(12): 2277-2284. DOI: 10.1097/iae.0000000000001902. |
113. | Nicholson L, Ramu J, Triantafyllopoulou I, et al. Diagnostic accuracy of disorganization of the retinal inner layers in detecting macular capillary non-perfusion in diabetic retinopathy[J]. Clin Exp Ophthalmol, 2015, 43(8): 735-741. DOI: 10.1111/ceo.12557. |
114. | Sun JK, Lin MM, Lammer J, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema[J]. JAMA Ophthalmol, 2014, 132(11): 1309-1316. DOI: 10.1001/jamaophthalmol.2014.2350. |
115. | Grewal DS, Hariprasad SM, Jaffe GJ. Role of disorganization of retinal inner layers as an optical coherence tomography biomarker in diabetic and uveitic macular edema[J]. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(4): 282-288. DOI: 10.3928/23258160-20170329-02. |
116. | Santos AR, Costa M, Schwartz C, et al. Optical coherence tomography baseline predictors for initial best-corrected visual acuity response to intravitreal anti-vascular endothelial growth factor treatment in eyes with diabetic macular edema: The CHARTRES Study[J]. Retina, 2018, 38(6): 1110-1119. DOI: 10.1097/iae.0000000000001687. |
117. | Radwan SH, Soliman AZ, Tokarev J, et al. Association of disorganization of retinal inner layers with vision after resolution of center-involved diabetic macular edema[J]. JAMA Ophthalmol, 2015, 133(7): 820-825. DOI: 10.1001/jamaophthalmol.2015.0972. |
118. | de Carlo TE, Chin AT, Bonini Filho MA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2364-2370. DOI: 10.1097/iae.0000000000000882. |
119. | Carnevali A, Sacconi R, Corbelli E, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy[J]. Acta Diabetol, 2017, 54(7): 695-702. DOI: 10.1007/s00592-017-0996-8. |
120. | Hirano T, Hoshiyama K, Hirabayashi K, et al. Vitreoretinal interface slab in OCT angiography for detecting diabetic retinal neovascularization[J]. Ophthalmol Retina, 2020, 4(6): 588-594. DOI: 10.1016/j.oret.2020.01.004. |
121. | Arya M, Sorour O, Chaudhri J, et al. Distinguishing intraretinal microvascular abnormalities from retinal neovascularization using optical coherence tomography angiography[J]. Retina, 2020, 40(9): 1686-1695. DOI: 10.1097/iae.0000000000002671. |
122. | Sawada O, Ichiyama Y, Obata S, et al. Comparison between wide-angle oct angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(7): 1275-1280. DOI: 10.1007/s00417-018-3992-y. |
123. | Hirano T, Kakihara S, Toriyama Y, et al. Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy[J]. Br J Ophthalmol, 2018, 102(9): 1199-1203. DOI: 10.1136/bjophthalmol-2017-311358. |
124. | Salz DA, de Carlo TE, Adhi M, et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes[J]. JAMA Ophthalmol, 2016, 134(6): 644-650. DOI: 10.1001/jamaophthalmol.2016.0600. |
125. | Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: a position statement by the American Diabetes Association[J]. Diabetes Care, 2017, 40(3): 412-418. DOI: 10.2337/dc16-2641. |
126. | Ferris F. Early photocoagulation in patients with either type Ⅰ or type Ⅱ diabete[J]. Trans Am Ophthalmol Soc, 1996, 94: 505-537. |
127. | Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. The Diabetic Retinopathy Study Research Group[J]. Ophthalmology, 1981, 88(7): 583-600. DOI: 10.1016/S0161-6420(81)34978-1. |
128. | Cai S, Bressler NM. Aflibercept, bevacizumab or ranibizumab for diabetic macular oedema: recent clinically relevant findings from DRCR. net Protocol T[J]. Curr Opin Ophthalmol, 2017, 28(6): 636-643. DOI: 10.1097/icu.0000000000000424. |
129. | Writing Committee for the Diabetic Retinopathy Clinical Research Network, Gross JG, Glassman AR, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[J]. JAMA, 2015, 314(20): 2137-2146. DOI: 10.1001/jama.2015.15217. |
130. | Ip MS, Domalpally A, Hopkins JJ, et al. Long-term effects of ranibizumab on diabetic retinopathy severity and progression[J]. Arch Ophthalmol, 2012, 130(9): 1145-1152. DOI: 10.1001/archophthalmol.2012.1043. |
131. | Wykoff CC, Eichenbaum DA, Roth DB, et al. Ranibizumab induces regression of diabetic retinopathy in most patients at high risk of progression to proliferative diabetic retinopathy[J]. Ophthalmol Retina, 2018, 2(10): 997-1009. DOI: 10.1016/j.oret.2018.06.005. |
132. | Brown DM, Schmidt-Erfurth U, Do DV, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies[J]. Ophthalmology, 2015, 122(10): 2044-2052. DOI: 10.1016/j.ophtha.2015.06.017. |
133. | Wykoff CC, Nittala MG, Villanueva Boone C, et al. Final outcomes from the randomized recovery trial of aflibercept for retinal nonperfusion in proliferative diabetic retinopathy[J]. Ophthalmol Retina, 2022, 6(7): 557-566. DOI: 10.1016/j.oret.2022.02.013. |
134. | Ernst BJ, García-Aguirre G, Oliver SC, et al. Intravitreal bevacizumab versus panretinal photocoagulation for treatment-naïve proliferative and severe nonproliferative diabetic retinopathy[J/OL]. Acta Ophthalmol, 2012, 90(7): e573-574[2012-03-09]. https://pubmed.ncbi.nlm.nih.gov/22405048/. DOI: 10.1111/j.1755-3768.2011.02364.x. |
135. | Lang GE, Stahl A, Voegeler J, et al. Efficacy and safety of ranibizumab with or without panretinal laser photocoagulation versus laser photocoagulation alone in proliferative diabetic retinopathy-the pride study[J/OL]. Acta Ophthalmol, 2020, 98(5): e530-539[2019-12-06]. https://pubmed.ncbi.nlm.nih.gov/31808278/. DOI: 10.1111/aos.14312. |
136. | Sivaprasad S, Prevost AT, Vasconcelos JC, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (clarity): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial[J]. Lancet, 2017, 389(10085): 2193-2203. DOI: 10.1016/s0140-6736(17)31193-5. |
137. | Gross JG, Glassman AR, Liu D, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(10): 1138-1148. DOI: 10.1001/jamaophthalmol.2018.3255. |
138. | Maguire MG, Liu D, Glassman AR, et al. Visual field changes over 5 years in patients treated with panretinal photocoagulation or ranibizumab for proliferative diabetic retinopathy[J]. JAMA Ophthalmol, 2020, 138(3): 285-293. DOI: 10.1001/jamaophthalmol.2019.5939. |
139. | Sameen M, Khan MS, Mukhtar A, et al. Efficacy of intravitreal bevacizumab combined with pan retinal photocoagulation versus panretinal photocoagulation alone in treatment of proliferative diabetic retinopathy[J]. Pak J Med Sci, 2017, 33(1): 142-145. DOI: 10.12669/pjms.331.11497. |
140. | Figueira J, Silva R, Henriques J, et al. Ranibizumab for high-risk proliferative diabetic retinopathy: an exploratory randomized controlled trial[J]. Ophthalmologica, 2016, 235(1): 34-41. DOI: 10.1159/000442026. |
141. | Figueira J, Fletcher E, Massin P, et al. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy (PROTEUS study)[J]. Ophthalmology, 2018, 125(5): 691-700. DOI: 10.1016/j.ophtha.2017.12.008. |
142. | Messias A, Ramos Filho JA, Messias K, et al. Electroretinographic findings associated with panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab treatment for high-risk proliferative diabetic retinopathy[J]. Doc Ophthalmol, 2012, 124(3): 225-236. DOI: 10.1007/s10633-012-9322-5. |
143. | Filho JA, Messias A, Almeida FP, et al. Panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab for high-risk proliferative diabetic retinopathy[J/OL]. Acta Ophthalmol, 2011, 89(7): e567-572[2011-07-05]. https://pubmed.ncbi.nlm.nih.gov/21726427/. DOI: 10.1111/j.1755-3768.2011.02184.x. |
144. | Chatziralli I, Dimitriou E, Theodossiadis G, et al. Intravitreal ranibizumab alone or in combination with panretinal photocoagulation for the treatment of proliferative diabetic retinopathy with coexistent macular edema: long-term outcomes of a prospective study[J]. Acta Diabetol, 2020, 57(10): 1219-1225. DOI: 10.1007/s00592-020-01548-y. |
145. | Obeid A, Gao X, Ali FS, et al. Loss to follow-up in patients with proliferative diabetic retinopathy after panretinal photocoagulation or intravitreal anti-VEGF injections[J]. Ophthalmology, 2018, 125(9): 1386-1392. DOI: 10.1016/j.ophtha.2018.02.034. |
146. | Zhang Q, Zhang T, Zhuang H, et al. Single-dose intravitreal conbercept before panretinal photocoagulation as an effective adjunctive treatment in Chinese proliferative diabetic retinopathy[J]. Ophthalmologica, 2019, 242(2): 59-68. DOI: 10.1159/000495423. |
147. | He F, Yu W. Longitudinal neovascular changes on optical coherence tomography angiography in proliferative diabetic retinopathy treated with panretinal photocoagulation alone versus with intravitreal conbercept plus panretinal photocoagulation: a pilot study[J]. Eye (Lond), 2020, 34(8): 1413-1418. DOI: 10.1038/s41433-019-0628-3. |
148. | Qu JF, Chen XJ, Liu QH, et al. Prophylactic intravitreal injection of aflibercept for preventing postvitrectomy hemorrhage in proliferative diabetic retinopathy: a randomized controlled trial[J/OL]. Frontiers Public Health, 2023,10:1067670[2023-01-11]. https://europepmc.org/article/MED/36711366. DOI: 10.3389/fpubh.2022.1067670. |
149. | Zhao XY, Xia S, Chen YX. Antivascular endothelial growth factor agents pretreatment before vitrectomy for complicated proliferative diabetic retinopathy: a meta-analysis of randomised controlled trials[J]. Br J Ophthalmol, 2018, 102(8): 1077-1085. DOI: 10.1136/bjophthalmol-2017-311344. |
150. | Smith JM, Steel DH. Anti-vascular endothelial growth factor for prevention of postoperative vitreous cavity haemorrhage after vitrectomy for proliferative diabetic retinopathy[J/OL]. Cochrane Database Syst Rev, 2015, 2015(8): CD008214[2015-08-07]. https://pubmed.ncbi.nlm.nih.gov/26250103/. DOI: 10.1002/14651858.CD008214.pub3. |
151. | Arevalo JF, Lasave AF, Kozak I, et al. Preoperative bevacizumab for tractional retinal detachment in proliferative diabetic retinopathy: a prospective randomized clinical trial[J]. Am J Ophthalmol, 2019, 207: 279-287. DOI: 10.1016/j.ajo.2019.05.007. |
152. | El-Batarny AM. Intravitreal bevacizumab as an adjunctive therapy before diabetic vitrectomy[J]. Clin Ophthalmol, 2008, 2(4): 709-716. |
153. | Hernández-Da Mota SE, Nuñez-Solorio SM. Experience with intravitreal bevacizumab as a preoperative adjunct in 23-G vitrectomy for advanced proliferative diabetic retinopathy[J]. Eur J Ophthalmol, 2010, 20(6): 1047-1052. DOI: 10.1177/112067211002000604. |
154. | di Lauro R, De Ruggiero P, di Lauro R, et al. Intravitreal bevacizumab for surgical treatment of severe proliferative diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2010, 248(6): 785-791. DOI: 10.1007/s00417-010-1303-3. |
155. | 董晓. 雷珠单抗对PDR患者玻璃体切割术后疗效的影响[J]. 国际眼科杂志, 2019, 19(5): 809-812. DOI: 10.3980/j.issn.1672-5123.2019.5.23.Dong X. Effect of ranibizumab on the efficacy of vitrectomy in patients with PDR[J]. Int Eye Sci, 2019, 19(5): 809-812. DOI: 10.3980/j.issn.1672-5123.2019.5.23. |
156. | Rizzo S, Genovesi-Ebert F, Di Bartolo E, et al. Injection of intravitreal bevacizumab (Avastin) as a preoperative adjunct before vitrectomy surgery in the treatment of severe proliferative diabetic retinopathy (PDR)[J]. Graefe's Arch Clin Exp Ophthalmol, 2008, 246(6): 837-842. DOI: 10.1007/s00417-008-0774-y. |
157. | Faisal SM, Tahir MA, Cheema AM, et al. Pars plana vitrectomy in vitreous hemorrhage with or without intravitreal bevacizumab a comparative overview[J]. Pak J Med Sci, 2018, 34(1): 221-225. DOI: 10.12669/pjms.341.12683. |
158. | Modarres M, Nazari H, Falavarjani KG, et al. Intravitreal injection of bevacizumab before vitrectomy for proliferative diabetic retinopathy[J]. Eur J Ophthalmol, 2009, 19(5): 848-852. DOI: 10.1177/112067210901900526. |
159. | Su L, Ren X, Wei H, et al. Intravitreal conbercept (KH902) for surgical treatment of severe proliferative diabetic retinopathy[J]. Retina, 2016, 36(5): 938-943. DOI: 10.1097/iae.0000000000000900. |
160. | Schmidt-Erfurth U, Lang GE, Holz FG, et al. Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: The RESTORE extension study[J]. Ophthalmology, 2014, 121(5): 1045-1053. DOI: 10.1016/j.ophtha.2013.11.041. |
161. | Ishibashi T, Li X, Koh A, et al. The reveal study: ranibizumab monotherapy or combined with laser versus laser monotherapy in Asian patients with diabetic macular edema[J]. Ophthalmology, 2015, 122(7): 1402-1415. DOI: 10.1016/j.ophtha.2015.02.006. |
162. | Korobelnik JF, Do DV, Schmidt-Erfurth U, et al. Intravitreal aflibercept for diabetic macular edema[J]. Ophthalmology, 2014, 121(11): 2247-2254. DOI: 10.1016/j.ophtha.2014.05.006. |
163. | Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema[J]. Ophthalmology, 2010, 117(6): 1064-1077. DOI: 10.1016/j.ophtha.2010.02.031. |
164. | Liu K, Wang H, He W, et al. Intravitreal conbercept for diabetic macular oedema: 2-year results from a randomised controlled trial and open-label extension study[J]. Br J Ophthalmol, 2022, 106(10): 1436-1443. DOI: 10.1136/bjophthalmol-2020-318690. |
165. | Mitchell P, Bandello F, Schmidt-Erfurth U, et al. The restore study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema[J]. Ophthalmology, 2011, 118(4): 615-625. DOI: 10.1016/j.ophtha.2011.01.031. |
166. | Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from 2 phase Ⅲ randomized trials: RISE and RIDE[J]. Ophthalmology, 2012, 119(4): 789-801. DOI: 10.1016/j.ophtha.2011.12.039. |
167. | Wang Q, Li T, Wu Z, et al. Novel vegf decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo[J/OL]. PLoS One, 2013, 8(8): e70544[2013-08-12]. https://pubmed.ncbi.nlm.nih.gov/23950958/. DOI: 10.1371/journal.pone.0070544. |
168. | Liu K, Song Y, Xu G, et al. Conbercept for treatment of neovascular age-related macular degeneration: results of the randomized phase 3 PHOENIX study[J]. Am J Ophthalmol, 2019, 197: 156-167. DOI: 10.1016/j.ajo.2018.08.026. |
169. | Cheng Y, Yuan L, Zhao MW, et al. Real-world outcomes of two-year conbercept therapy for diabetic macular edema[J]. Int J Ophthalmol, 2021, 14(3): 416-422. DOI: 10.18240/ijo.2021.03.14. |
170. | Sun X, Zhang J, Tian J, et al. Comparison of the efficacy and safety of intravitreal conbercept with intravitreal ranibizumab for treatment of diabetic macular edema: a meta-analysis[J/OL]. J Ophthalmol, 2020, 2020: 5809081[2020-03-23]. https://pubmed.ncbi.nlm.nih.gov/32280526/. DOI: 10.1155/2020/5809081. |
171. | Wang H, Guo J, Tao S, et al. One-year effectiveness study of intravitreously administered conbercept(®) monotherapy in diabetic macular degeneration: a systematic review and meta-analysis[J]. Diabetes Ther, 2020, 11(5): 1103-1117. DOI: 10.1007/s13300-020-00806-0. |
172. | 张陶然, 王薇, 李明铭, 等. 康柏西普单次玻璃体内注射对糖尿病黄斑水肿患者黄斑形态与功能的影响[J]. 眼科新进展, 2020, 40(8): 761-764. DOI: 10.13389/j.cnki.rao.2020.0173.Zhang TR, Wang W, Li MM, et al. Changes in macular morphology and function of diabetic macular edema after intravitreal injection of conbercept[J]. Rec Adv Ophthalmol, 2020, 40(8): 761-764. DOI: 10.13389/j.cnki.rao.2020.0173. |
173. | Lukic M, Williams G, Shalchi Z, et al. Intravitreal aflibercept for diabetic macular oedema: moorfields' real-world 12-month visual acuity and anatomical outcomes[J]. Eur J Ophthalmol, 2020, 30(3): 557-562. DOI: 10.1177/1120672119833270. |
174. | Mukkamala L, Bhagat N, Zarbin M. Practical lessons from protocol T for the management of diabetic macular edema[J]. Dev Ophthalmol, 2017, 60: 109-124. DOI: 10.1159/000459694. |
175. | Baker CW, Glassman AR, Beaulieu WT, et al. Effect of initial management with aflibercept vs laser photocoagulation vs observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial[J]. JAMA, 2019, 321(19): 1880-1894. DOI: 10.1001/jama.2019.5790. |
176. | Fouda SM, Bahgat AM. Intravitreal aflibercept versus intravitreal ranibizumab for the treatment of diabetic macular edema[J]. Clin Ophthalmol, 2017, 11: 567-571. DOI: 10.2147/opth.S131381. |
177. | Gao LR, Wang X, Han W, et al. A multicenter prospective phase Ⅲ clinical randomized study of simultaneous integrated boost intensity-modulated radiotherapy with or without concurrent chemotherapy in patients with esophageal cancer: 3JECROG P-02 study protocol[J]. BMC Cancer, 2020, 20(1): 901. DOI: 10.1186/s12885-020-07387-y. |
178. | Bressler SB, Ayala AR, Bressler NM, et al. Persistent macular thickening after ranibizumab treatment for diabetic macular edema with vision impairment[J]. JAMA Ophthalmol, 2016, 134(3): 278-285. DOI: 10.1001/jamaophthalmol.2015.5346. |
179. | Bressler NM, Beaulieu WT, Glassman AR, et al. Persistent macular thickening following intravitreous aflibercept, bevacizumab, or ranibizumab for central-involved diabetic macular edema with vision impairment: a secondary analysis of a randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(3): 257-269. DOI: 10.1001/jamaophthalmol.2017.6565. |
180. | Madjedi K, Pereira A, Ballios BG, et al. Switching between anti-VEGF agents in the management of refractory diabetic macular edema: a systematic review[J]. Surv Ophthalmol, 2022, 67(5): 1364-1372. DOI: 10.1016/j.survophthal.2022.04.001. |
181. | Ehrlich R, Pokroy R, Segal O, et al. Diabetic macular edema treated with ranibizumab following bevacizumab failure in israel (DERBI study)[J]. Eur J Ophthalmol, 2019, 29(2): 229-233. DOI: 10.1177/1120672118782102. |
182. | Demircan A, Alkin Z, Yesilkaya C, et al. Comparison of intravitreal aflibercept and ranibizumab following initial treatment with ranibizumab in persistent diabetic macular edema[J/OL]. J Ophthalmol, 2018, 2018: 4171628[2018-04-19]. https://pubmed.ncbi.nlm.nih.gov/29850202/. DOI: 10.1155/2018/4171628. |
183. | Massin P, Bandello F, Garweg JG, et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase Ⅱ study[J]. Diabetes Care, 2010, 33(11): 2399-2405. DOI: 10.2337/dc10-0493. |
184. | Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema[J]. N Engl J Med, 2015, 372(13): 1193-1203. DOI: 10.1056/NEJMoa1414264. |
185. | Prünte C, Fajnkuchen F, Mahmood S, et al. Ranibizumab 0.5 mg treat-and-extend regimen for diabetic macular oedema: the retain study[J]. Br J Ophthalmol, 2016, 100(6): 787-795. DOI: 10.1136/bjophthalmol-2015-307249. |
186. | 吴乔伟, 黄珍, 闫明, 等. 康柏西普不同给药方案治疗糖尿病黄斑水肿的疗效对比[J]. 中华眼底病杂志, 2022, 38(1): 40-48. DOI: 10.3760/cma.j.cn511434-20211123-00653.Wu QW, Huang Z, Yan M, et al. Comparison of different loading doses followed by pro re nata regimens of intravitreal conbercept for diabetic macular edema[J]. Chin J Ocul Fundus Dis, 2022, 38(1): 40-48. DOI: 10.3760/cma.j.cn511434-20211123-00653. |
187. | Sarohia GS, Nanji K, Khan M, et al. Treat-and-extend versus alternate dosing strategies with anti-vascular endothelial growth factor agents to treat center involving diabetic macular edema: a systematic review and meta-analysis of 2 346 eyes[J]. Surv Ophthalmol, 2022, 67(5): 1346-1363. DOI: 10.1016/j.survophthal.2022.04.003. |
188. | Ross EL, Hutton DW, Stein JD, et al. Cost-effectiveness of aflibercept, bevacizumab, and ranibizumab for diabetic macular edema treatment: analysis from the diabetic retinopathy clinical research network comparative effectiveness trial[J]. JAMA Ophthalmol, 2016, 134(8): 888-896. DOI: 10.1001/jamaophthalmol.2016.1669. |
189. | Leal EC, Manivannan A, Hosoya K, et al. Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2007, 48(11): 5257-5265. DOI: 10.1167/iovs.07-0112. |
190. | Zhang X, Zeng H, Bao S, et al. Diabetic macular edema: new concepts in patho-physiology and treatment[J]. Cell Biosci, 2014, 4: 27. DOI: 10.1186/2045-3701-4-27. |
191. | Stewart MW. Corticosteroid use for diabetic macular edema: old fad or new trend?[J]. Curr Diab Rep, 2012, 12(4): 364-375. DOI: 10.1007/s11892-012-0281-8. |
192. | Cunningham MA, Edelman JL, Kaushal S. Intravitreal steroids for macular edema: the past, the present, and the future[J]. Surv Ophthalmol, 2008, 53(2): 139-149. DOI: 10.1016/j.survophthal.2007.12.005. |
193. | Chang-Lin JE, Attar M, Acheampong AA, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant[J]. Invest Ophthalmol Vis Sci, 2011, 52(1): 80-86. DOI: 10.1167/iovs.10-5285. |
194. | Boyer DS, Yoon YH, Belfort R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema[J]. Ophthalmology, 2014, 121(10): 1904-1914. DOI: 10.1016/j.ophtha.2014.04.024. |
195. | Wei W, Chen Y, Hu B, et al. Multicenter, prospective, randomized study of dexamethasone intravitreal implant in patients with center-involved diabetic macular edema in the asia-pacific region[J]. Clin Ophthalmol, 2021, 15: 4097-4108. DOI: 10.2147/opth.S325618. |
196. | Callanan DG, Gupta S, Boyer DS, et al. Dexamethasone intravitreal implant in combination with laser photocoagulation for the treatment of diffuse diabetic macular edema[J]. Ophthalmology, 2013, 120(9): 1843-1851. DOI: 10.1016/j.ophtha.2013.02.018. |
197. | Ip MS, Bressler SB, Antoszyk AN, et al. A randomized trial comparing intravitreal triamcinolone and focal/grid photocoagulation for diabetic macular edema: baseline features[J]. Retina, 2008, 28(7): 919-930. DOI: 10.1097/IAE.0b013e31818144a7. |
198. | Diabetic Retinopathy Clinical Research Network. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema[J]. Ophthalmology, 2008, 115(9): 1447-1449. DOI: 10.1016/j.ophtha.2008.06.015. |
199. | Meyer J, Fry C, Turner A, et al. Intravitreal dexamethasone versus bevacizumab in aboriginal and torres strait islander patients with diabetic macular oedema: The OASIS study (a randomised control trial)[J]. Clin Exp Ophthalmol, 2022, 50(5): 522-533. DOI: 10.1111/ceo.14079. |
200. | Bandello F, Preziosa C, Querques G, et al. Update of intravitreal steroids for the treatment of diabetic macular edema[J]. Ophthalmic Res, 2014, 52(2): 89-96. DOI: 10.1159/000362764. |
201. | Fallico M, Maugeri A, Lotery A, et al. Fluocinolone acetonide vitreous insert for chronic diabetic macular oedema: a systematic review with meta-analysis of real-world experience[J/OL]. Sci Rep, 2021, 11(1): 4800[2021-02-26]. https://pubmed.ncbi.nlm.nih.gov/33637841/. DOI: 10.1038/s41598-021-84362-y. |
202. | Zucchiatti I, Lattanzio R, Querques G, et al. Intravitreal dexamethasone implant in patients with persistent diabetic macular edema[J]. Ophthalmologica, 2012, 228(2): 117-122. DOI: 10.1159/000336225. |
203. | Campochiaro PA, Hafiz G, Mir TA, et al. Pro-permeability factors in diabetic macular edema; the diabetic macular edema treated with ozurdex trial[J]. Am J Ophthalmol, 2016, 168: 13-23. DOI: 10.1016/j.ajo.2016.04.017. |
204. | Bandello F, Battaglia Parodi M, Tremolada G, et al. Steroids as part of combination treatment: the future for the management of macular edema?[J]. Ophthalmologica, 2010, 224(Suppl 1): S41-45. DOI: 10.1159/000315161. |
205. | Fong DS, Strauber SF, Aiello LP, et al. Comparison of the modified early treatment diabetic retinopathy study and mild macular grid laser photocoagulation strategies for diabetic macular edema[J]. Arch Ophthalmol, 2007, 125(4): 469-480. DOI: 10.1001/archopht.125.4.469. |
206. | Lavinsky D, Cardillo JA, Melo LA Jr, et al. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4314-4323. DOI: 10.1167/iovs.10-6828. |
207. | Figueira J, Khan J, Nunes S, et al. Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema[J]. Br J Ophthalmol, 2009, 93(10): 1341-1344. DOI: 10.1136/bjo.2008.146712. |
208. | Lai FHP, Chan RPS, Lai ACH, et al. Comparison of two-year treatment outcomes between subthreshold micropulse (577 nm) laser and aflibercept for diabetic macular edema[J]. Jpn J Ophthalmol, 2021, 65(5): 680-688. DOI: 10.1007/s10384-021-00846-4. |
209. | Moisseiev E, Abbassi S, Thinda S, et al. Subthreshold micropulse laser reduces anti-VEGF injection burden in patients with diabetic macular edema[J]. Eur J Ophthalmol, 2018, 28(1): 68-73. DOI: 10.5301/ejo.5001000. |
210. | Abouhussein MA, Gomaa AR. Aflibercept plus micropulse laser versus aflibercept monotherapy for diabetic macular edema: 1-year results of a randomized clinical trial[J]. Int Ophthalmol, 2020, 40(5): 1147-1154. DOI: 10.1007/s10792-019-01280-9. |
211. | Furashova O, Strassburger P, Becker KA, et al. Efficacy of combining intravitreal injections of ranibizumab with micropulse diode laser versus intravitreal injections of ranibizumab alone in diabetic macular edema (ReCaLL): a single center, randomised, controlled, non-inferiority clinical trial[J]. BMC Ophthalmol, 2020, 20(1): 308. DOI: 10.1186/s12886-020-01576-w. |
212. | Khattab AM, Hagras SM, AbdElhamid A, et al. Aflibercept with adjuvant micropulsed yellow laser versus aflibercept monotherapy in diabetic macular edema[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(7): 1373-1380. DOI: 10.1007/s00417-019-04355-6. |
213. | Diabetic Retinopathy Clinical Research Network Writing Committee, Haller JA, Qin H, et al. Vitrectomy outcomes in eyes with diabetic macular edema and vitreomacular traction[J]. Ophthalmology, 2010, 117(6): 1087-1093. DOI: 10.1016/j.ophtha.2009.10.040. |
214. | Leibowitz HM, Krueger DE, Maunder LR, et al. The framingham eye study monograph: an ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975[J]. Surv Ophthalmol, 1980, 24(Suppl): S335-610. |
215. | Klein BE, Klein R, Moss SE. Incidence of cataract surgery in the wisconsin epidemiologic study of diabetic retinopathy[J]. Am J Ophthalmol, 1995, 119(3): 295-300. DOI: 10.1016/s0002-9394(14)71170-5. |
216. | Takamura Y, Kubo E, Akagi Y. Analysis of the effect of intravitreal bevacizumab injection on diabetic macular edema after cataract surgery[J]. Ophthalmology, 2009, 116(6): 1151-1157. DOI: 10.1016/j.ophtha.2009.01.014. |
217. | Yang B, Song Y. Therapeutic effects of phacoemulsification combined with intravitreal injection of triamcinolone in treating cataract with diabetic macular edema[J]. Int Eye Sci, 2015, 15: 1532-1535. DOI: 10.3980/j.issn.1672-5123.2015.9.10. |
218. | Lanzagorta-Aresti A, Palacios-Pozo E, Menezo Rozalen JL, et al. Prevention of vision loss after cataract surgery in diabetic macular edema with intravitreal bevacizumab: a pilot study[J]. Retina, 2009, 29(4): 530-535. DOI: 10.1097/IAE.0b013e31819c6302. |
219. | Wang J, Liu Y, Hu Y, et al. Clinical observation of phacoemulsification combined with intravitreal injection of conbercept in cataract patients with diabetic macular edema[J/OL]. J Ophthalmol, 2021, 2021: 8849730[2021-02-05]. https://pubmed.ncbi.nlm.nih.gov/33628483/. DOI: 10.1155/2021/8849730. |
220. | 中华医学会眼科学分会白内障及人工晶状体学组. 中国糖尿病患者白内障围手术期管理策略专家共识(2020年)[J]. 中华眼科杂志, 2020, 56(5): 337-342. DOI: 10.3760/cma.j.cn112142-20191106-00559.Cataract and Intraocular Lens Group, Ophthalmology Society of Chinese Medical Association. Expert consensus on perioperative cataract management strategies for diabetic patients in China (2020)[J]. Chin J Ophthalmol, 2020, 56(5): 337-342. DOI: 10.3760/cma.j.cn112142-20191106-00559. |
- 1. Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119[2021-12-06]. https://pubmed.ncbi.nlm.nih.gov/34879977/. DOI: 10.1016/j.diabres.2021.109119.
- 2. Tan GS, Cheung N, Simó R, et al. Diabetic macular oedema[J]. Lancet Diabetes Endocrinol, 2017, 5(2): 143-155. DOI: 10.1016/s2213-8587(16)30052-3.
- 3. Wong TY, Sun J, Kawasaki R, et al. Guidelines on diabetic eye care: The International Council of Ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings[J]. Ophthalmology, 2018, 125(10): 1608-1622. DOI: 10.1016/j.ophtha.2018.04.007.
- 4. 中华医学会眼科学会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2014年)[J]. 中华眼科杂志, 2014, 50(11): 851-865. DOI: 10.3760/cma.j.issn.0412-4081.2014.11.014.Fundus Disease Group, Ophthalmology Society of Chinese Medical Association. Guidelines for clinical diagnosis and treatment of diabetic retinopathy (2014)[J]. Chin J Ophthalmol, 2014, 50(11): 851-865. DOI: 10.3760/cma.j.issn.0412-4081.2014.11.014.
- 5. Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the management of diabetic macular edema by the European Society of Retina Specialists (EURETINA)[J]. Ophthalmologica, 2017, 237(4): 185-222. DOI: 10.1159/000458539.
- 6. Institute of Medicine (US) Committee on Standards for Developing Trustworthy Clinical Practice Guidelines. Clinical practice guidelines we can trust[M]. Washington DC: The National Academies Press, 2011: 18.
- 7. 蒋朱明, 詹思延, 贾晓巍, 等. 制订/修订《临床诊疗指南》的基本方法及程序[J]. 中华医学杂志, 2016, 96(4): 250-253. DOI: 10.3760/cma.j.issn.0376-2491.2016.04.004.Jiang ZM, Zhan SY, Jia XW, et al. Develop/revise the basic methods and procedures of the clinical treatment guidelines[J]. Natl Med J China, 2016, 96(4): 250-253. DOI: 10.3760/cma.j.issn.0376-2491.2016.04.004.
- 8. Alonso-Coello P, Oxman AD, Moberg J, et al. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: clinical practice guidelines[J/OL]. BMJ, 2016, 353: i2089[2016-06-30]. https://pubmed.ncbi.nlm.nih.gov/27365494/. DOI: 10.1136/bmj.i2089.
- 9. Higgins JPT, Savović J, Page MJ, et al. Assessing risk of bias in a randomized trial[M/OL]//Higgins JPT, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions. 6th ed. Cochrane, 2019. http://www.training.cochrane.org/handbook.
- 10. Stang A. Critical evaluation of the newcastle-ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9): 603-605. DOI: 10.1007/s10654-010-9491-z.
- 11. Alonso-Coello P, Schünemann HJ, Moberg J, et al. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: introduction[J/OL]. BMJ, 2016, 353: i2016[2016-06-28]. https://pubmed.ncbi.nlm.nih.gov/27353417/. DOI: 10.1136/bmj.i2016.
- 12. Schünemann HJ, Mustafa R, Brozek J, et al. GRADE guidelines: 16. GRADE evidence to decision frameworks for tests in clinical practice and public health[J]. J Clin Epidemiol, 2016, 76: 89-98. DOI: 10.1016/j.jclinepi.2016.01.032.
- 13. 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2010年版)[J]. 中国实用乡村医生杂志, 2012, 20(1): 81-117. DOI: 10.3969/j.issn.1672-7185.2012.04.001.Diabetics Branch of Chinese Medical Association. Chinese guidelines for the prevention and treatment of type 2 diabetes (2010 edition)[J]. Chinese Practical Journal of Rural Doctor, 2012, 20(1): 81-117. DOI: 10.3969/j.issn.1672-7185.2012.04.001.
- 14. Sattar N, Gill JM. Type 2 diabetes in migrant south asians: mechanisms, mitigation, and management[J]. Lancet Diabetes Endocrinol, 2015, 3(12): 1004-1016. DOI: 10.1016/s2213-8587(15)00326-5.
- 15. Leasher JL, Bourne RR, Flaxman SR, et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010[J]. Diabetes Care, 2016, 39(9): 1643-1649. DOI: 10.2337/dc15-2171.
- 16. Werfalli M, Engel ME, Musekiwa A, et al. The prevalence of type 2 diabetes among older people in africa: a systematic review[J]. Lancet Diabetes Endocrinol, 2016, 4(1): 72-84. DOI: 10.1016/s2213-8587(15)00363-0.
- 17. Foundation ID. Diabetes: facts and figures[EB/OL](2017-12-01)[2023-01-10]. http://www.Idf.Org/about-diabetes/facts-figures.
- 18. Pan XR, Yang WY, Li GW, et al. Prevalence of diabetes and its risk factors in china, 1994. National diabetes prevention and control cooperative group[J]. Diabetes Care, 1997, 20(11): 1664-1669. DOI: 10.2337/diacare.20.11.1664.
- 19. 李立明, 饶克勤, 孔灵芝, 等. 中国居民2002年营养与健康状况调查[J]. 中华流行病学杂志, 2005, 26(7): 478-484. DOI: 10.3760/j.issn:0254-6450.2005.07.004.Li LM, Yao KQ, Kong LZ, et al. A description on the Chinese national nutrition and health survey in 2002[J]. Chin J Epidemiol, 2005, 26(7): 478-484. DOI: 10.3760/j.issn:0254-6450.2005.07.004.
- 20. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China[J]. N Engl J Med, 2010, 362(12): 1090-1101. DOI: 10.1056/NEJMoa0908292.
- 21. Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9): 948-959. DOI: 10.1001/jama.2013.168118.
- 22. Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24): 2515-2523. DOI: 10.1001/jama.2017.7596.
- 23. Wang L, Peng W, Zhao Z, et al. Prevalence and treatment of diabetes in China, 2013-2018[J]. JAMA, 2021, 326(24): 2498-2506. DOI: 10.1001/jama.2021.22208.
- 24. Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3): 556-564. DOI: 10.2337/dc11-1909.
- 25. Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. DOI: 10.1016/j.ophtha.2021.04.027.
- 26. 邓宇轩, 叶雯青, 孙艳婷, 等. 中国糖尿病视网膜病变患病率的荟萃分析[J]. 中华医学杂志, 2020, 100(48): 3846-3852. DOI: 10.3760/cma.j.cn112137-20200925-02720.Deng YX, Ye WQ, Sun YT, et al. A meta-analysis of prevalence of diabetic retinopathy in China[J]. Natl Med J China, 2020, 100(48): 3846-3852. DOI: 10.3760/cma.j.cn112137-20200925-02720.
- 27. Sachdeva MM. Retinal neurodegeneration in diabetes: an emerging concept in diabetic retinopathy[J]. Curr Diab Rep, 2021, 21(12): 65. DOI: 10.1007/s11892-021-01428-x.
- 28. Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy[J/OL]. Prog Retin Eye Res, 2021, 83: 100919[2020-11-12]. https://pubmed.ncbi.nlm.nih.gov/33188897/. DOI: 10.1016/j.preteyeres.2020.100919.
- 29. Wilkinson CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682. DOI: 10.1016/s0161-6420(03)00475-5.
- 30. Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified airlie house classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group[J]. Ophthalmology, 1991, 98(5 Suppl): S786-806.
- 31. Singh RP, Elman MJ, Singh SK, et al. Advances in the treatment of diabetic retinopathy[J/OL]. J Diabetes Complications, 2019, 33(12): 107417[2019-08-15]. https://pubmed.ncbi.nlm.nih.gov/31669065/. DOI: 10.1016/j.jdiacomp.2019.107417.
- 32. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report number 1. Early Treatment Diabetic Retinopathy Study Research Group[J]. Arch Ophthalmol, 1985, 103(12): 1796-1806. DOI: 10.1001/archopht.1985.01050120030015.
- 33. Mitchell P. Development and progression of diabetic eye disease in newcastle (1977-1984): rates and risk factors[J]. Aust N Z J Ophthalmol, 1985, 13(1): 39-44. DOI: 10.1111/j.1442-9071.1985.tb00397.x.
- 34. Klein R, Klein BE, Moss SE, et al. The wisconsin epidemiologic study of diabetic retinopathy. XIV. Ten-year incidence and progression of diabetic retinopathy[J]. Arch Ophthalmol, 1994, 112(9): 1217-1228. DOI: 10.1001/archopht.1994.01090210105023.
- 35. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group[J]. BMJ, 1998, 317(7160): 703-713. DOI: 10.1136/bmj.317.7160.703.
- 36. Cohen O, Norymberg K, Neumann E, et al. Complication-free duration and the risk of development of retinopathy in elderly diabetic patients[J]. Arch Intern Med, 1998, 158(6): 641-644. DOI: 10.1001/archinte.158.6.641.
- 37. Wan Nazaimoon WM, Letchuman R, Noraini N, et al. Systolic hypertension and duration of diabetes mellitus are important determinants of retinopathy and microalbuminuria in young diabetics[J]. Diabetes Res Clin Pract, 1999, 46(3): 213-221. DOI: 10.1016/s0168-8227(99)00095-9.
- 38. Klein R, Knudtson MD, Lee KE, et al. The wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes[J]. Ophthalmology, 2008, 115(11): 1859-1868. DOI: 10.1016/j.ophtha.2008.08.023.
- 39. Voigt M, Schmidt S, Lehmann T, et al. Prevalence and progression rate of diabetic retinopathy in type 2 diabetes patients in correlation with the duration of diabetes[J]. Exp Clin Endocrinol Diabetes, 2018, 126(9): 570-576. DOI: 10.1055/s-0043-120570.
- 40. Xu J, Xu L, Wang YX, et al. Ten-year cumulative incidence of diabetic retinopathy. The Beijing Eye Study 2001/2011[J/OL]. PLoS One, 2014, 9(10): e111320[2014-10-27]. https://pubmed.ncbi.nlm.nih.gov/25347072/. DOI: 10.1371/journal.pone.0111320.
- 41. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial[J]. Diabetes, 1995, 44(8): 968-983.
- 42. Kumari N, Bhargava M, Nguyen DQ, et al. Six-year incidence and progression of diabetic retinopathy in indian adults: The Singapore Indian Eye Study[J]. Br J Ophthalmol, 2019, 103(12): 1732-1739. DOI: 10.1136/bjophthalmol-2018-313282.
- 43. Tam VH, Lam EP, Chu BC, et al. Incidence and progression of diabetic retinopathy in Hong Kong Chinese with type 2 diabetes mellitus[J]. J Diabetes Complications, 2009, 23(3): 185-193. DOI: 10.1016/j.jdiacomp.2008.03.001.
- 44. Varma R, Bressler NM, Doan QV, et al. Prevalence of and risk factors for diabetic macular edema in the united states[J]. JAMA Ophthalmol, 2014, 132(11): 1334-1340. DOI: 10.1001/jamaophthalmol.2014.2854.
- 45. Park CY, Park SE, Bae JC, et al. Prevalence of and risk factors for diabetic retinopathy in Koreans with type Ⅱ diabetes: baseline characteristics of seoul metropolitan city-diabetes prevention program (SMC-DPP) participants[J]. Br J Ophthalmol, 2012, 96(2): 151-155. DOI: 10.1136/bjo.2010.198275.
- 46. Klein R, Sharrett AR, Klein BE, et al. The association of atherosclerosis, vascular risk factors, and retinopathy in adults with diabetes: the atherosclerosis risk in communities study[J]. Ophthalmology, 2002, 109(7): 1225-1234. DOI: 10.1016/s0161-6420(02)01074-6.
- 47. van Leiden HA, Dekker JM, Moll AC, et al. Blood pressure, lipids, and obesity are associated with retinopathy: the hoorn study[J]. Diabetes Care, 2002, 25(8): 1320-1325. DOI: 10.2337/diacare.25.8.1320.
- 48. Lee JH, Kim YA, Lee Y, et al. Association between interarm blood pressure differences and diabetic retinopathy in patients with type 2 diabetes[J/OL]. Diab Vasc Dis Res, 2020, 17(7): 1479164120945910[2020-07-01]. https://pubmed.ncbi.nlm.nih.gov/32746630/. DOI: 10.1177/1479164120945910.
- 49. Zhong Y, Yue S, Wu J, et al. Association of the serum total cholesterol to triglyceride ratio with diabetic retinopathy in chinese patients with type 2 diabetes: a community-based study[J]. Diabetes Ther, 2019, 10(2): 597-604. DOI: 10.1007/s13300-019-0579-5.
- 50. Idiculla J, Nithyanandam S, Joseph M, et al. Serum lipids and diabetic retinopathy: a cross-sectional study[J]. Indian J Endocrinol Metab, 2012, 16(Suppl 2): S492-494. DOI: 10.4103/2230-8210.104142.
- 51. Azad N, Bahn GD, Emanuele NV, et al. Association of blood glucose control and lipids with diabetic retinopathy in the veterans affairs diabetes trial (VADT)[J]. Diabetes Care, 2016, 39(5): 816-822. DOI: 10.2337/dc15-1897.
- 52. Lyons TJ, Jenkins AJ, Zheng D, et al. Diabetic retinopathy and serum lipoprotein subclasses in the dcct/edic cohort[J]. Invest Ophthalmol Vis Sci, 2004, 45(3): 910-918. DOI: 10.1167/iovs.02-0648.
- 53. Lopes-Virella MF, Baker NL, Hunt KJ, et al. High concentrations of age-LDL and oxidized LDL in circulating immune complexes are associated with progression of retinopathy in type 1 diabetes[J]. Diabetes Care, 2012, 35(6): 1333-1340. DOI: 10.2337/dc11-2040.
- 54. Shi R, Zhao L, Wang F, et al. Effects of lipid-lowering agents on diabetic retinopathy: a meta-analysis and systematic review[J]. Int J Ophthalmol, 2018, 11(2): 287-295. DOI: 10.18240/ijo.2018.02.18.
- 55. Kang EY, Chen TH, Garg SJ, et al. Association of statin therapy with prevention of vision-threatening diabetic retinopathy[J]. JAMA Ophthalmol, 2019, 137(4): 363-371. DOI: 10.1001/jamaophthalmol.2018.6399.
- 56. Eliasson B. Cigarette smoking and diabetes[J]. Prog Cardiovasc Dis, 2003, 45(5): 405-413. DOI: 10.1053/pcad.2003.00103.
- 57. Mühlhauser I, Bender R, Bott U, et al. Cigarette smoking and progression of retinopathy and nephropathy in type 1 diabetes[J]. Diabet Med, 1996, 13(6): 536-543. DOI: 10.1002/(sici)1096-9136(199606)13:6<536::Aid-dia110>3.0.Co;2-j.
- 58. Wannamethee SG, Shaper AG, Perry IJ. Smoking as a modifiable risk factor for type 2 diabetes in middle-aged men[J]. Diabetes Care, 2001, 24(9): 1590-1595. DOI: 10.2337/diacare.24.9.1590.
- 59. Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type Ⅱ diabetes over 6 years from diagnosis[J]. Diabetologia, 2001, 44(2): 156-163. DOI: 10.1007/s001250051594.
- 60. Li R, Zhang P, Barker LE, et al. Cost-effectiveness of interventions to prevent and control diabetes mellitus: a systematic review[J]. Diabetes Care, 2010, 33(8): 1872-1894. DOI: 10.2337/dc10-0843.
- 61. 李立新, 黎晓新, 胡雨桐, 等. 糖尿病视网膜病变与全身因素的相关分析[J]. 中华眼科杂志, 1992, 28(4): 228-230.Li LX, Li XX, Hu YT, et al. Correlation analysis between diabetic retinopathy and systemic factors[J]. Chin J Ophthalmol, 1992, 28(4): 228-230.
- 62. Romero-Aroca P, Baget-Bernaldiz M, Navarro-Gil R, et al. Glomerular filtration rate and/or ratio of urine albumin to creatinine as markers for diabetic retinopathy: a ten-year follow-up study[J/OL]. J Diabetes Res, 2018, 2018: 5637130[2018-02-26]. https://pubmed.ncbi.nlm.nih.gov/29682579/. DOI: 10.1155/2018/5637130.
- 63. Klein BE, Moss SE, Klein R. Effect of pregnancy on progression of diabetic retinopathy[J]. Diabetes Care, 1990, 13(1): 34-40. DOI: 10.2337/diacare.13.1.34.
- 64. Rosenbloom AL, Silverstein JH, Amemiya S, et al. Type 2 diabetes in children and adolescents[J]. Pediatr Diabetes, 2009, 10 Suppl 12: S17-32. DOI: 10.1111/j.1399-5448.2009.00584.x.
- 65. Imperatore G, Hanson RL, Pettitt DJ, et al. Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group[J]. Diabetes, 1998, 47(5): 821-830. DOI: 10.2337/diabetes.47.5.821.
- 66. Looker HC, Nelson RG, Chew E, et al. Genome-wide linkage analyses to identify loci for diabetic retinopathy[J]. Diabetes, 2007, 56(4): 1160-1166. DOI: 10.2337/db06-1299.
- 67. Hu C, Zhang R, Yu W, et al. CPVL/CHN2 genetic variant is associated with diabetic retinopathy in chinese type 2 diabetic patients[J]. Diabetes, 2011, 60(11): 3085-3089. DOI: 10.2337/db11-0028.
- 68. Jin L, Wang T, Jiang S, et al. The association of a genetic variant in SCAF8-CNKSR3 with diabetic kidney disease and diabetic retinopathy in a chinese population[J/OL]. J Diabetes Res, 2017, 2017: 6542689[2017-03-19]. https://pubmed.ncbi.nlm.nih.gov/28401168/. DOI: 10.1155/2017/6542689.
- 69. Peng D, Wang J, Zhang R, et al. Common variants in or near ZNRF1, COLEC12, SCYL1BP1 and API5 are associated with diabetic retinopathy in Chinese patients with type 2 diabetes[J]. Diabetologia, 2015, 58(6): 1231-1238. DOI: 10.1007/s00125-015-3569-9.
- 70. Zhang J, Zhang M, Zhao H, et al. Identification of proliferative diabetic retinopathy-associated genes on the protein-protein interaction network by using heat diffusion algorithm[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(10): 165794[2020-10-01]. https://pubmed.ncbi.nlm.nih.gov/32278010/. DOI: 10.1016/j.bbadis.2020.165794.
- 71. Wang H, Li S, Wang C, et al. Plasma and vitreous metabolomics profiling of proliferative diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2022, 63(2): 17. DOI: 10.1167/iovs.63.2.17.
- 72. Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group[J]. Ophthalmology, 1995, 102(4): 647-661. DOI: 10.1016/s0161-6420(95)30973-6.
- 73. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group[J]. Lancet, 1998, 352(9131): 837-853. DOI: 10.1016/S0140-6736(98)07019-6.
- 74. ACCORD Study Group, ACCORD Eye Study Group, Chew EY, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes[J]. N Engl J Med, 2010, 363(3): 233-244. DOI: 10.1056/NEJMoa1001288.
- 75. Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Eye Study Group and the Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Study Group. Persistent effects of intensive glycemic control on retinopathy in type 2 diabetes in the action to control cardiovascular risk in diabetes (ACCORD) follow-on study[J]. Diabetes Care, 2016, 39(7): 1089-1100. DOI: 10.2337/dc16-0024.
- 76. Aiello LP, DCCT/EDIC Research Group. Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study[J]. Diabetes Care, 2014, 37(1): 17-23. DOI: 10.2337/dc13-2251.
- 77. Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group, Lachin JM, White NH, et al. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC[J]. Diabetes, 2015, 64(2): 631-642. DOI: 10.2337/db14-0930.
- 78. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J]. N Engl J Med, 1993, 329(14): 977-986. DOI: 10.1056/nejm199309303291401.
- 79. Beulens JW, Patel A, Vingerling JR, et al. Effects of blood pressure lowering and intensive glucose control on the incidence and progression of retinopathy in patients with type 2 diabetes mellitus: a randomised controlled trial[J]. Diabetologia, 2009, 52(10): 2027-2036. DOI: 10.1007/s00125-009-1457-x.
- 80. Chew EY, Davis MD, Danis RP, et al. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Eye Study[J]. Ophthalmology, 2014, 121(12): 2443-2451. DOI: 10.1016/j.ophtha.2014.07.019.
- 81. Giorgino F, Home PD, Tuomilehto J. Glucose control and vascular outcomes in type 2 diabetes: is the picture clear?[J]. Diabetes Care, 2016, 39(Suppl 2): S187-195. DOI: 10.2337/dcS15-3023.
- 82. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes[J]. N Engl J Med, 2008, 358(24): 2545-2559. DOI: 10.1056/NEJMoa0802743.
- 83. ADVANCE Collaborative Group. ADVANCE-Action in Diabetes and Vascular Disease: patient recruitment and characteristics of the study population at baseline[J]. Diabet Med, 2005, 22(7): 882-888. DOI: 10.1111/j.1464-5491.2005.01596.x.
- 84. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes[J]. N Engl J Med, 2009, 360(2): 129-139. DOI: 10.1056/NEJMoa0808431.
- 85. 李淑婷, 王相宁, 吴强. 糖尿病视网膜病变筛查意义及操作指南[J]. 中华眼底病杂志, 2019, 35(2): 200-206. DOI: 10.3760/cma.j.issn.1005-1015.2019.02.019.Li ST, Wang XN, Wu Q. A review of guidelines for diabetic retinopathy screening[J]. Chin J Ocul Fundus Dis, 2019, 35(2): 200-206. DOI: 10.3760/cma.j.issn.1005-1015.2019.02.019.
- 86. 中华医学会糖尿病学分会视网膜病变学组. 糖尿病相关眼病防治多学科中国专家共识(2021年版)[J]. 中华糖尿病杂志, 2021, 13(11): 1026-1042. DOI: 10.3760/cma.j.cn115791-20211006-00534.Diabetic Retinopathy Group of Chinese Diabetes Society. Chinese multidisciplinary expert consensus on the prevention and treatment of diabetic eye disease (2021 edition)[J]. Chin J Diabetes Mellitus, 2021, 13(11): 1026-1042. DOI: 10.3760/cma.j.cn115791-20211006-00534.
- 87. Heath V. Diabetes: progression of diabetic retinopathy found to be a potential risk during pregnancy[J]. Nat Rev Endocrinol, 2010, 6(7): 354. DOI: 10.1038/nrendo.2010.73.
- 88. Shen HQ, Wang J, Niu T, et al. Dynamic versus static ultra-widefield fluorescein angiography in eyes with diabetic retinopathy: a pilot prospective cross-sectional study[J]. Int J Ophthalmol, 2021, 14(3): 409-415. DOI: 10.18240/ijo.2021.03.13.
- 89. 中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病专业委员会. 我国糖尿病视网膜病变筛查的图像采集及阅片指南(2017年)[J]. 中华眼科杂志, 2017, 53(12): 890-896. DOI: 10.3760/cma.j.issn.0412-4081.2017.12.003.Fundus Diseases Group of Ophthalmology Branch of Chinese Medical Association, fundus diseases Professional Committee of Ophthalmology Branch of Chinese Medical Doctor Association. Guidelines for image collection and screening for diabetic retinopathy in China (2017)[J]. Chin J Ophthalmol, 2017, 53(12): 890-896. DOI: 10.3760/cma.j.issn.0412-4081.2017.12.003.
- 90. Aiello LP, Odia I, Glassman AR, et al. Comparison of early treatment diabetic retinopathy study standard 7-field imaging with ultrawide-field imaging for determining severity of diabetic retinopathy[J]. JAMA Ophthalmol, 2019, 137(1): 65-73. DOI: 10.1001/jamaophthalmol.2018.4982.
- 91. Silva PS, Cavallerano JD, Sun JK, et al. Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity[J]. Ophthalmology, 2013, 120(12): 2587-2595. DOI: 10.1016/j.ophtha.2013.05.004.
- 92. Silva PS, Cavallerano JD, Sun JK, et al. Nonmydriatic ultrawide field retinal imaging compared with dilated standard 7-field 35-mm photography and retinal specialist examination for evaluation of diabetic retinopathy[J]. Am J Ophthalmol, 2012, 154(3): 549-559. DOI: 10.1016/j.ajo.2012.03.019.
- 93. Rasmussen ML, Broe R, Frydkjaer-Olsen U, et al. Comparison between early treatment diabetic retinopathy study 7-field retinal photos and non-mydriatic, mydriatic and mydriatic steered widefield scanning laser ophthalmoscopy for assessment of diabetic retinopathy[J]. J Diabetes Complications, 2015, 29(1): 99-104. DOI: 10.1016/j.jdiacomp.2014.08.009.
- 94. Kernt M, Hadi I, Pinter F, et al. Assessment of diabetic retinopathy using nonmydriatic ultra-widefield scanning laser ophthalmoscopy (Optomap) compared with ETDRS 7-field stereo photography[J]. Diabetes Care, 2012, 35(12): 2459-2463. DOI: 10.2337/dc12-0346.
- 95. Price LD, Au S, Chong NV. Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy[J]. Clin Ophthalmol, 2015, 9: 527-531. DOI: 10.2147/opth.S79448.
- 96. 史雪辉, 张丛, 魏文斌. 关注糖尿病黄斑水肿的光学相干断层扫描分型及相关影像特征[J]. 中华眼科医学杂志(电子版), 2021, 11(1): 1-7. DOI: 10.3877/cma.j.issn.2095-2007.2021.01.001.Shi XH, Zhang C, Wei WB. Pay attention to OCT-based classification and features of diabetic macular edema[J]. Chin J Ophthal Med (Electronic Edition), 2021, 11(1): 1-7. DOI: 10.3877/cma.j.issn.2095-2007.2021.01.001.
- 97. Shen Y, Liu K, Xu X. Correlation between visual function and photoreceptor integrity in diabetic macular edema: spectral-domain optical coherence tomography[J]. Curr Eye Res, 2016, 41(3): 391-399. DOI: 10.3109/02713683.2015.1019003.
- 98. Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy[J]. Vision Res, 2017, 139: 93-100. DOI: 10.1016/j.visres.2017.03.013.
- 99. Gerendas BS, Prager S, Deak G, et al. Predictive imaging biomarkers relevant for functional and anatomical outcomes during ranibizumab therapy of diabetic macular oedema[J]. Br J Ophthalmol, 2018, 102(2): 195-203. DOI: 10.1136/bjophthalmol-2017-310483.
- 100. Reznicek L, Cserhati S, Seidensticker F, et al. Functional and morphological changes in diabetic macular edema over the course of anti-vascular endothelial growth factor treatment[J/OL]. Acta Ophthalmol, 2013, 91(7): e529-536[2013-05-07]. https://pubmed.ncbi.nlm.nih.gov/23647578/. DOI: 10.1111/aos.12153.
- 101. Karst SG, Lammer J, Mitsch C, et al. Detailed analysis of retinal morphology in patients with diabetic macular edema (DME) randomized to ranibizumab or triamcinolone treatment[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(1): 49-58. DOI: 10.1007/s00417-017-3828-1.
- 102. Vujosevic S, Torresin T, Berton M, et al. Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities[J]. Am J Ophthalmol, 2017, 181: 149-155. DOI: 10.1016/j.ajo.2017.06.026.
- 103. Sophie R, Lu N, Campochiaro PA. Predictors of functional and anatomic outcomes in patients with diabetic macular edema treated with ranibizumab[J]. Ophthalmology, 2015, 122(7): 1395-1401. DOI: 10.1016/j.ophtha.2015.02.036.
- 104. Lammer J, Bolz M, Baumann B, et al. Detection and analysis of hard exudates by polarization-sensitive optical coherence tomography in patients with diabetic maculopathy[J]. Invest Ophthalmol Vis Sci, 2014, 55(3): 1564-1571. DOI: 10.1167/iovs.13-13539.
- 105. Vujosevic S, Bini S, Torresin T, et al. Hyperreflective retinal spots in normal and diabetic eyes: B-scan and en face spectral domain optical coherence tomography evaluation[J]. Retina, 2017, 37(6): 1092-1103. DOI: 10.1097/iae.0000000000001304.
- 106. DDe Benedetto U, Sacconi R, Pierro L, et al. Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy[J]. Retina, 2015, 35(3): 449-453. DOI: 10.1097/iae.0000000000000336.
- 107. Murakami T, Suzuma K, Uji A, et al. Association between characteristics of foveal cystoid spaces and short-term responsiveness to ranibizumab for diabetic macular edema[J]. Jpn J Ophthalmol, 2018, 62(3): 292-301. DOI: 10.1007/s10384-018-0575-8.
- 108. Hwang HS, Chae JB, Kim JY, et al. Association between hyperreflective dots on spectral-domain optical coherence tomography in macular edema and response to treatment[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5958-5967. DOI: 10.1167/iovs.17-22725.
- 109. Kang JW, Chung H, Chan Kim H. Correlation of optical coherence tomographic hyperreflective foci with visual outcomes in different patterns of diabetic macular edema[J]. Retina, 2016, 36(9): 1630-1639. DOI: 10.1097/iae.0000000000000995.
- 110. Ashraf M, Souka A, Adelman R. Predicting outcomes to anti-vascular endothelial growth factor (VEGF) therapy in diabetic macular oedema: a review of the literature[J]. Br J Ophthalmol, 2016, 100(12): 1596-1604. DOI: 10.1136/bjophthalmol-2016-308388.
- 111. Yeung L, Lima VC, Garcia P, et al. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema[J]. Ophthalmology, 2009, 116(6): 1158-1167. DOI: 10.1016/j.ophtha.2008.12.063.
- 112. Moein HR, Novais EA, Rebhun CB, et al. Optical coherence tomography angiography to detect macular capillary ischemia in patients with inner retinal changes after resolved diabetic macular edema[J]. Retina, 2018, 38(12): 2277-2284. DOI: 10.1097/iae.0000000000001902.
- 113. Nicholson L, Ramu J, Triantafyllopoulou I, et al. Diagnostic accuracy of disorganization of the retinal inner layers in detecting macular capillary non-perfusion in diabetic retinopathy[J]. Clin Exp Ophthalmol, 2015, 43(8): 735-741. DOI: 10.1111/ceo.12557.
- 114. Sun JK, Lin MM, Lammer J, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema[J]. JAMA Ophthalmol, 2014, 132(11): 1309-1316. DOI: 10.1001/jamaophthalmol.2014.2350.
- 115. Grewal DS, Hariprasad SM, Jaffe GJ. Role of disorganization of retinal inner layers as an optical coherence tomography biomarker in diabetic and uveitic macular edema[J]. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(4): 282-288. DOI: 10.3928/23258160-20170329-02.
- 116. Santos AR, Costa M, Schwartz C, et al. Optical coherence tomography baseline predictors for initial best-corrected visual acuity response to intravitreal anti-vascular endothelial growth factor treatment in eyes with diabetic macular edema: The CHARTRES Study[J]. Retina, 2018, 38(6): 1110-1119. DOI: 10.1097/iae.0000000000001687.
- 117. Radwan SH, Soliman AZ, Tokarev J, et al. Association of disorganization of retinal inner layers with vision after resolution of center-involved diabetic macular edema[J]. JAMA Ophthalmol, 2015, 133(7): 820-825. DOI: 10.1001/jamaophthalmol.2015.0972.
- 118. de Carlo TE, Chin AT, Bonini Filho MA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2364-2370. DOI: 10.1097/iae.0000000000000882.
- 119. Carnevali A, Sacconi R, Corbelli E, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy[J]. Acta Diabetol, 2017, 54(7): 695-702. DOI: 10.1007/s00592-017-0996-8.
- 120. Hirano T, Hoshiyama K, Hirabayashi K, et al. Vitreoretinal interface slab in OCT angiography for detecting diabetic retinal neovascularization[J]. Ophthalmol Retina, 2020, 4(6): 588-594. DOI: 10.1016/j.oret.2020.01.004.
- 121. Arya M, Sorour O, Chaudhri J, et al. Distinguishing intraretinal microvascular abnormalities from retinal neovascularization using optical coherence tomography angiography[J]. Retina, 2020, 40(9): 1686-1695. DOI: 10.1097/iae.0000000000002671.
- 122. Sawada O, Ichiyama Y, Obata S, et al. Comparison between wide-angle oct angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(7): 1275-1280. DOI: 10.1007/s00417-018-3992-y.
- 123. Hirano T, Kakihara S, Toriyama Y, et al. Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy[J]. Br J Ophthalmol, 2018, 102(9): 1199-1203. DOI: 10.1136/bjophthalmol-2017-311358.
- 124. Salz DA, de Carlo TE, Adhi M, et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes[J]. JAMA Ophthalmol, 2016, 134(6): 644-650. DOI: 10.1001/jamaophthalmol.2016.0600.
- 125. Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: a position statement by the American Diabetes Association[J]. Diabetes Care, 2017, 40(3): 412-418. DOI: 10.2337/dc16-2641.
- 126. Ferris F. Early photocoagulation in patients with either type Ⅰ or type Ⅱ diabete[J]. Trans Am Ophthalmol Soc, 1996, 94: 505-537.
- 127. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. The Diabetic Retinopathy Study Research Group[J]. Ophthalmology, 1981, 88(7): 583-600. DOI: 10.1016/S0161-6420(81)34978-1.
- 128. Cai S, Bressler NM. Aflibercept, bevacizumab or ranibizumab for diabetic macular oedema: recent clinically relevant findings from DRCR. net Protocol T[J]. Curr Opin Ophthalmol, 2017, 28(6): 636-643. DOI: 10.1097/icu.0000000000000424.
- 129. Writing Committee for the Diabetic Retinopathy Clinical Research Network, Gross JG, Glassman AR, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[J]. JAMA, 2015, 314(20): 2137-2146. DOI: 10.1001/jama.2015.15217.
- 130. Ip MS, Domalpally A, Hopkins JJ, et al. Long-term effects of ranibizumab on diabetic retinopathy severity and progression[J]. Arch Ophthalmol, 2012, 130(9): 1145-1152. DOI: 10.1001/archophthalmol.2012.1043.
- 131. Wykoff CC, Eichenbaum DA, Roth DB, et al. Ranibizumab induces regression of diabetic retinopathy in most patients at high risk of progression to proliferative diabetic retinopathy[J]. Ophthalmol Retina, 2018, 2(10): 997-1009. DOI: 10.1016/j.oret.2018.06.005.
- 132. Brown DM, Schmidt-Erfurth U, Do DV, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies[J]. Ophthalmology, 2015, 122(10): 2044-2052. DOI: 10.1016/j.ophtha.2015.06.017.
- 133. Wykoff CC, Nittala MG, Villanueva Boone C, et al. Final outcomes from the randomized recovery trial of aflibercept for retinal nonperfusion in proliferative diabetic retinopathy[J]. Ophthalmol Retina, 2022, 6(7): 557-566. DOI: 10.1016/j.oret.2022.02.013.
- 134. Ernst BJ, García-Aguirre G, Oliver SC, et al. Intravitreal bevacizumab versus panretinal photocoagulation for treatment-naïve proliferative and severe nonproliferative diabetic retinopathy[J/OL]. Acta Ophthalmol, 2012, 90(7): e573-574[2012-03-09]. https://pubmed.ncbi.nlm.nih.gov/22405048/. DOI: 10.1111/j.1755-3768.2011.02364.x.
- 135. Lang GE, Stahl A, Voegeler J, et al. Efficacy and safety of ranibizumab with or without panretinal laser photocoagulation versus laser photocoagulation alone in proliferative diabetic retinopathy-the pride study[J/OL]. Acta Ophthalmol, 2020, 98(5): e530-539[2019-12-06]. https://pubmed.ncbi.nlm.nih.gov/31808278/. DOI: 10.1111/aos.14312.
- 136. Sivaprasad S, Prevost AT, Vasconcelos JC, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (clarity): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial[J]. Lancet, 2017, 389(10085): 2193-2203. DOI: 10.1016/s0140-6736(17)31193-5.
- 137. Gross JG, Glassman AR, Liu D, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(10): 1138-1148. DOI: 10.1001/jamaophthalmol.2018.3255.
- 138. Maguire MG, Liu D, Glassman AR, et al. Visual field changes over 5 years in patients treated with panretinal photocoagulation or ranibizumab for proliferative diabetic retinopathy[J]. JAMA Ophthalmol, 2020, 138(3): 285-293. DOI: 10.1001/jamaophthalmol.2019.5939.
- 139. Sameen M, Khan MS, Mukhtar A, et al. Efficacy of intravitreal bevacizumab combined with pan retinal photocoagulation versus panretinal photocoagulation alone in treatment of proliferative diabetic retinopathy[J]. Pak J Med Sci, 2017, 33(1): 142-145. DOI: 10.12669/pjms.331.11497.
- 140. Figueira J, Silva R, Henriques J, et al. Ranibizumab for high-risk proliferative diabetic retinopathy: an exploratory randomized controlled trial[J]. Ophthalmologica, 2016, 235(1): 34-41. DOI: 10.1159/000442026.
- 141. Figueira J, Fletcher E, Massin P, et al. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy (PROTEUS study)[J]. Ophthalmology, 2018, 125(5): 691-700. DOI: 10.1016/j.ophtha.2017.12.008.
- 142. Messias A, Ramos Filho JA, Messias K, et al. Electroretinographic findings associated with panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab treatment for high-risk proliferative diabetic retinopathy[J]. Doc Ophthalmol, 2012, 124(3): 225-236. DOI: 10.1007/s10633-012-9322-5.
- 143. Filho JA, Messias A, Almeida FP, et al. Panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab for high-risk proliferative diabetic retinopathy[J/OL]. Acta Ophthalmol, 2011, 89(7): e567-572[2011-07-05]. https://pubmed.ncbi.nlm.nih.gov/21726427/. DOI: 10.1111/j.1755-3768.2011.02184.x.
- 144. Chatziralli I, Dimitriou E, Theodossiadis G, et al. Intravitreal ranibizumab alone or in combination with panretinal photocoagulation for the treatment of proliferative diabetic retinopathy with coexistent macular edema: long-term outcomes of a prospective study[J]. Acta Diabetol, 2020, 57(10): 1219-1225. DOI: 10.1007/s00592-020-01548-y.
- 145. Obeid A, Gao X, Ali FS, et al. Loss to follow-up in patients with proliferative diabetic retinopathy after panretinal photocoagulation or intravitreal anti-VEGF injections[J]. Ophthalmology, 2018, 125(9): 1386-1392. DOI: 10.1016/j.ophtha.2018.02.034.
- 146. Zhang Q, Zhang T, Zhuang H, et al. Single-dose intravitreal conbercept before panretinal photocoagulation as an effective adjunctive treatment in Chinese proliferative diabetic retinopathy[J]. Ophthalmologica, 2019, 242(2): 59-68. DOI: 10.1159/000495423.
- 147. He F, Yu W. Longitudinal neovascular changes on optical coherence tomography angiography in proliferative diabetic retinopathy treated with panretinal photocoagulation alone versus with intravitreal conbercept plus panretinal photocoagulation: a pilot study[J]. Eye (Lond), 2020, 34(8): 1413-1418. DOI: 10.1038/s41433-019-0628-3.
- 148. Qu JF, Chen XJ, Liu QH, et al. Prophylactic intravitreal injection of aflibercept for preventing postvitrectomy hemorrhage in proliferative diabetic retinopathy: a randomized controlled trial[J/OL]. Frontiers Public Health, 2023,10:1067670[2023-01-11]. https://europepmc.org/article/MED/36711366. DOI: 10.3389/fpubh.2022.1067670.
- 149. Zhao XY, Xia S, Chen YX. Antivascular endothelial growth factor agents pretreatment before vitrectomy for complicated proliferative diabetic retinopathy: a meta-analysis of randomised controlled trials[J]. Br J Ophthalmol, 2018, 102(8): 1077-1085. DOI: 10.1136/bjophthalmol-2017-311344.
- 150. Smith JM, Steel DH. Anti-vascular endothelial growth factor for prevention of postoperative vitreous cavity haemorrhage after vitrectomy for proliferative diabetic retinopathy[J/OL]. Cochrane Database Syst Rev, 2015, 2015(8): CD008214[2015-08-07]. https://pubmed.ncbi.nlm.nih.gov/26250103/. DOI: 10.1002/14651858.CD008214.pub3.
- 151. Arevalo JF, Lasave AF, Kozak I, et al. Preoperative bevacizumab for tractional retinal detachment in proliferative diabetic retinopathy: a prospective randomized clinical trial[J]. Am J Ophthalmol, 2019, 207: 279-287. DOI: 10.1016/j.ajo.2019.05.007.
- 152. El-Batarny AM. Intravitreal bevacizumab as an adjunctive therapy before diabetic vitrectomy[J]. Clin Ophthalmol, 2008, 2(4): 709-716.
- 153. Hernández-Da Mota SE, Nuñez-Solorio SM. Experience with intravitreal bevacizumab as a preoperative adjunct in 23-G vitrectomy for advanced proliferative diabetic retinopathy[J]. Eur J Ophthalmol, 2010, 20(6): 1047-1052. DOI: 10.1177/112067211002000604.
- 154. di Lauro R, De Ruggiero P, di Lauro R, et al. Intravitreal bevacizumab for surgical treatment of severe proliferative diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2010, 248(6): 785-791. DOI: 10.1007/s00417-010-1303-3.
- 155. 董晓. 雷珠单抗对PDR患者玻璃体切割术后疗效的影响[J]. 国际眼科杂志, 2019, 19(5): 809-812. DOI: 10.3980/j.issn.1672-5123.2019.5.23.Dong X. Effect of ranibizumab on the efficacy of vitrectomy in patients with PDR[J]. Int Eye Sci, 2019, 19(5): 809-812. DOI: 10.3980/j.issn.1672-5123.2019.5.23.
- 156. Rizzo S, Genovesi-Ebert F, Di Bartolo E, et al. Injection of intravitreal bevacizumab (Avastin) as a preoperative adjunct before vitrectomy surgery in the treatment of severe proliferative diabetic retinopathy (PDR)[J]. Graefe's Arch Clin Exp Ophthalmol, 2008, 246(6): 837-842. DOI: 10.1007/s00417-008-0774-y.
- 157. Faisal SM, Tahir MA, Cheema AM, et al. Pars plana vitrectomy in vitreous hemorrhage with or without intravitreal bevacizumab a comparative overview[J]. Pak J Med Sci, 2018, 34(1): 221-225. DOI: 10.12669/pjms.341.12683.
- 158. Modarres M, Nazari H, Falavarjani KG, et al. Intravitreal injection of bevacizumab before vitrectomy for proliferative diabetic retinopathy[J]. Eur J Ophthalmol, 2009, 19(5): 848-852. DOI: 10.1177/112067210901900526.
- 159. Su L, Ren X, Wei H, et al. Intravitreal conbercept (KH902) for surgical treatment of severe proliferative diabetic retinopathy[J]. Retina, 2016, 36(5): 938-943. DOI: 10.1097/iae.0000000000000900.
- 160. Schmidt-Erfurth U, Lang GE, Holz FG, et al. Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: The RESTORE extension study[J]. Ophthalmology, 2014, 121(5): 1045-1053. DOI: 10.1016/j.ophtha.2013.11.041.
- 161. Ishibashi T, Li X, Koh A, et al. The reveal study: ranibizumab monotherapy or combined with laser versus laser monotherapy in Asian patients with diabetic macular edema[J]. Ophthalmology, 2015, 122(7): 1402-1415. DOI: 10.1016/j.ophtha.2015.02.006.
- 162. Korobelnik JF, Do DV, Schmidt-Erfurth U, et al. Intravitreal aflibercept for diabetic macular edema[J]. Ophthalmology, 2014, 121(11): 2247-2254. DOI: 10.1016/j.ophtha.2014.05.006.
- 163. Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema[J]. Ophthalmology, 2010, 117(6): 1064-1077. DOI: 10.1016/j.ophtha.2010.02.031.
- 164. Liu K, Wang H, He W, et al. Intravitreal conbercept for diabetic macular oedema: 2-year results from a randomised controlled trial and open-label extension study[J]. Br J Ophthalmol, 2022, 106(10): 1436-1443. DOI: 10.1136/bjophthalmol-2020-318690.
- 165. Mitchell P, Bandello F, Schmidt-Erfurth U, et al. The restore study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema[J]. Ophthalmology, 2011, 118(4): 615-625. DOI: 10.1016/j.ophtha.2011.01.031.
- 166. Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from 2 phase Ⅲ randomized trials: RISE and RIDE[J]. Ophthalmology, 2012, 119(4): 789-801. DOI: 10.1016/j.ophtha.2011.12.039.
- 167. Wang Q, Li T, Wu Z, et al. Novel vegf decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo[J/OL]. PLoS One, 2013, 8(8): e70544[2013-08-12]. https://pubmed.ncbi.nlm.nih.gov/23950958/. DOI: 10.1371/journal.pone.0070544.
- 168. Liu K, Song Y, Xu G, et al. Conbercept for treatment of neovascular age-related macular degeneration: results of the randomized phase 3 PHOENIX study[J]. Am J Ophthalmol, 2019, 197: 156-167. DOI: 10.1016/j.ajo.2018.08.026.
- 169. Cheng Y, Yuan L, Zhao MW, et al. Real-world outcomes of two-year conbercept therapy for diabetic macular edema[J]. Int J Ophthalmol, 2021, 14(3): 416-422. DOI: 10.18240/ijo.2021.03.14.
- 170. Sun X, Zhang J, Tian J, et al. Comparison of the efficacy and safety of intravitreal conbercept with intravitreal ranibizumab for treatment of diabetic macular edema: a meta-analysis[J/OL]. J Ophthalmol, 2020, 2020: 5809081[2020-03-23]. https://pubmed.ncbi.nlm.nih.gov/32280526/. DOI: 10.1155/2020/5809081.
- 171. Wang H, Guo J, Tao S, et al. One-year effectiveness study of intravitreously administered conbercept(®) monotherapy in diabetic macular degeneration: a systematic review and meta-analysis[J]. Diabetes Ther, 2020, 11(5): 1103-1117. DOI: 10.1007/s13300-020-00806-0.
- 172. 张陶然, 王薇, 李明铭, 等. 康柏西普单次玻璃体内注射对糖尿病黄斑水肿患者黄斑形态与功能的影响[J]. 眼科新进展, 2020, 40(8): 761-764. DOI: 10.13389/j.cnki.rao.2020.0173.Zhang TR, Wang W, Li MM, et al. Changes in macular morphology and function of diabetic macular edema after intravitreal injection of conbercept[J]. Rec Adv Ophthalmol, 2020, 40(8): 761-764. DOI: 10.13389/j.cnki.rao.2020.0173.
- 173. Lukic M, Williams G, Shalchi Z, et al. Intravitreal aflibercept for diabetic macular oedema: moorfields' real-world 12-month visual acuity and anatomical outcomes[J]. Eur J Ophthalmol, 2020, 30(3): 557-562. DOI: 10.1177/1120672119833270.
- 174. Mukkamala L, Bhagat N, Zarbin M. Practical lessons from protocol T for the management of diabetic macular edema[J]. Dev Ophthalmol, 2017, 60: 109-124. DOI: 10.1159/000459694.
- 175. Baker CW, Glassman AR, Beaulieu WT, et al. Effect of initial management with aflibercept vs laser photocoagulation vs observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial[J]. JAMA, 2019, 321(19): 1880-1894. DOI: 10.1001/jama.2019.5790.
- 176. Fouda SM, Bahgat AM. Intravitreal aflibercept versus intravitreal ranibizumab for the treatment of diabetic macular edema[J]. Clin Ophthalmol, 2017, 11: 567-571. DOI: 10.2147/opth.S131381.
- 177. Gao LR, Wang X, Han W, et al. A multicenter prospective phase Ⅲ clinical randomized study of simultaneous integrated boost intensity-modulated radiotherapy with or without concurrent chemotherapy in patients with esophageal cancer: 3JECROG P-02 study protocol[J]. BMC Cancer, 2020, 20(1): 901. DOI: 10.1186/s12885-020-07387-y.
- 178. Bressler SB, Ayala AR, Bressler NM, et al. Persistent macular thickening after ranibizumab treatment for diabetic macular edema with vision impairment[J]. JAMA Ophthalmol, 2016, 134(3): 278-285. DOI: 10.1001/jamaophthalmol.2015.5346.
- 179. Bressler NM, Beaulieu WT, Glassman AR, et al. Persistent macular thickening following intravitreous aflibercept, bevacizumab, or ranibizumab for central-involved diabetic macular edema with vision impairment: a secondary analysis of a randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(3): 257-269. DOI: 10.1001/jamaophthalmol.2017.6565.
- 180. Madjedi K, Pereira A, Ballios BG, et al. Switching between anti-VEGF agents in the management of refractory diabetic macular edema: a systematic review[J]. Surv Ophthalmol, 2022, 67(5): 1364-1372. DOI: 10.1016/j.survophthal.2022.04.001.
- 181. Ehrlich R, Pokroy R, Segal O, et al. Diabetic macular edema treated with ranibizumab following bevacizumab failure in israel (DERBI study)[J]. Eur J Ophthalmol, 2019, 29(2): 229-233. DOI: 10.1177/1120672118782102.
- 182. Demircan A, Alkin Z, Yesilkaya C, et al. Comparison of intravitreal aflibercept and ranibizumab following initial treatment with ranibizumab in persistent diabetic macular edema[J/OL]. J Ophthalmol, 2018, 2018: 4171628[2018-04-19]. https://pubmed.ncbi.nlm.nih.gov/29850202/. DOI: 10.1155/2018/4171628.
- 183. Massin P, Bandello F, Garweg JG, et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase Ⅱ study[J]. Diabetes Care, 2010, 33(11): 2399-2405. DOI: 10.2337/dc10-0493.
- 184. Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema[J]. N Engl J Med, 2015, 372(13): 1193-1203. DOI: 10.1056/NEJMoa1414264.
- 185. Prünte C, Fajnkuchen F, Mahmood S, et al. Ranibizumab 0.5 mg treat-and-extend regimen for diabetic macular oedema: the retain study[J]. Br J Ophthalmol, 2016, 100(6): 787-795. DOI: 10.1136/bjophthalmol-2015-307249.
- 186. 吴乔伟, 黄珍, 闫明, 等. 康柏西普不同给药方案治疗糖尿病黄斑水肿的疗效对比[J]. 中华眼底病杂志, 2022, 38(1): 40-48. DOI: 10.3760/cma.j.cn511434-20211123-00653.Wu QW, Huang Z, Yan M, et al. Comparison of different loading doses followed by pro re nata regimens of intravitreal conbercept for diabetic macular edema[J]. Chin J Ocul Fundus Dis, 2022, 38(1): 40-48. DOI: 10.3760/cma.j.cn511434-20211123-00653.
- 187. Sarohia GS, Nanji K, Khan M, et al. Treat-and-extend versus alternate dosing strategies with anti-vascular endothelial growth factor agents to treat center involving diabetic macular edema: a systematic review and meta-analysis of 2 346 eyes[J]. Surv Ophthalmol, 2022, 67(5): 1346-1363. DOI: 10.1016/j.survophthal.2022.04.003.
- 188. Ross EL, Hutton DW, Stein JD, et al. Cost-effectiveness of aflibercept, bevacizumab, and ranibizumab for diabetic macular edema treatment: analysis from the diabetic retinopathy clinical research network comparative effectiveness trial[J]. JAMA Ophthalmol, 2016, 134(8): 888-896. DOI: 10.1001/jamaophthalmol.2016.1669.
- 189. Leal EC, Manivannan A, Hosoya K, et al. Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2007, 48(11): 5257-5265. DOI: 10.1167/iovs.07-0112.
- 190. Zhang X, Zeng H, Bao S, et al. Diabetic macular edema: new concepts in patho-physiology and treatment[J]. Cell Biosci, 2014, 4: 27. DOI: 10.1186/2045-3701-4-27.
- 191. Stewart MW. Corticosteroid use for diabetic macular edema: old fad or new trend?[J]. Curr Diab Rep, 2012, 12(4): 364-375. DOI: 10.1007/s11892-012-0281-8.
- 192. Cunningham MA, Edelman JL, Kaushal S. Intravitreal steroids for macular edema: the past, the present, and the future[J]. Surv Ophthalmol, 2008, 53(2): 139-149. DOI: 10.1016/j.survophthal.2007.12.005.
- 193. Chang-Lin JE, Attar M, Acheampong AA, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant[J]. Invest Ophthalmol Vis Sci, 2011, 52(1): 80-86. DOI: 10.1167/iovs.10-5285.
- 194. Boyer DS, Yoon YH, Belfort R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema[J]. Ophthalmology, 2014, 121(10): 1904-1914. DOI: 10.1016/j.ophtha.2014.04.024.
- 195. Wei W, Chen Y, Hu B, et al. Multicenter, prospective, randomized study of dexamethasone intravitreal implant in patients with center-involved diabetic macular edema in the asia-pacific region[J]. Clin Ophthalmol, 2021, 15: 4097-4108. DOI: 10.2147/opth.S325618.
- 196. Callanan DG, Gupta S, Boyer DS, et al. Dexamethasone intravitreal implant in combination with laser photocoagulation for the treatment of diffuse diabetic macular edema[J]. Ophthalmology, 2013, 120(9): 1843-1851. DOI: 10.1016/j.ophtha.2013.02.018.
- 197. Ip MS, Bressler SB, Antoszyk AN, et al. A randomized trial comparing intravitreal triamcinolone and focal/grid photocoagulation for diabetic macular edema: baseline features[J]. Retina, 2008, 28(7): 919-930. DOI: 10.1097/IAE.0b013e31818144a7.
- 198. Diabetic Retinopathy Clinical Research Network. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema[J]. Ophthalmology, 2008, 115(9): 1447-1449. DOI: 10.1016/j.ophtha.2008.06.015.
- 199. Meyer J, Fry C, Turner A, et al. Intravitreal dexamethasone versus bevacizumab in aboriginal and torres strait islander patients with diabetic macular oedema: The OASIS study (a randomised control trial)[J]. Clin Exp Ophthalmol, 2022, 50(5): 522-533. DOI: 10.1111/ceo.14079.
- 200. Bandello F, Preziosa C, Querques G, et al. Update of intravitreal steroids for the treatment of diabetic macular edema[J]. Ophthalmic Res, 2014, 52(2): 89-96. DOI: 10.1159/000362764.
- 201. Fallico M, Maugeri A, Lotery A, et al. Fluocinolone acetonide vitreous insert for chronic diabetic macular oedema: a systematic review with meta-analysis of real-world experience[J/OL]. Sci Rep, 2021, 11(1): 4800[2021-02-26]. https://pubmed.ncbi.nlm.nih.gov/33637841/. DOI: 10.1038/s41598-021-84362-y.
- 202. Zucchiatti I, Lattanzio R, Querques G, et al. Intravitreal dexamethasone implant in patients with persistent diabetic macular edema[J]. Ophthalmologica, 2012, 228(2): 117-122. DOI: 10.1159/000336225.
- 203. Campochiaro PA, Hafiz G, Mir TA, et al. Pro-permeability factors in diabetic macular edema; the diabetic macular edema treated with ozurdex trial[J]. Am J Ophthalmol, 2016, 168: 13-23. DOI: 10.1016/j.ajo.2016.04.017.
- 204. Bandello F, Battaglia Parodi M, Tremolada G, et al. Steroids as part of combination treatment: the future for the management of macular edema?[J]. Ophthalmologica, 2010, 224(Suppl 1): S41-45. DOI: 10.1159/000315161.
- 205. Fong DS, Strauber SF, Aiello LP, et al. Comparison of the modified early treatment diabetic retinopathy study and mild macular grid laser photocoagulation strategies for diabetic macular edema[J]. Arch Ophthalmol, 2007, 125(4): 469-480. DOI: 10.1001/archopht.125.4.469.
- 206. Lavinsky D, Cardillo JA, Melo LA Jr, et al. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4314-4323. DOI: 10.1167/iovs.10-6828.
- 207. Figueira J, Khan J, Nunes S, et al. Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema[J]. Br J Ophthalmol, 2009, 93(10): 1341-1344. DOI: 10.1136/bjo.2008.146712.
- 208. Lai FHP, Chan RPS, Lai ACH, et al. Comparison of two-year treatment outcomes between subthreshold micropulse (577 nm) laser and aflibercept for diabetic macular edema[J]. Jpn J Ophthalmol, 2021, 65(5): 680-688. DOI: 10.1007/s10384-021-00846-4.
- 209. Moisseiev E, Abbassi S, Thinda S, et al. Subthreshold micropulse laser reduces anti-VEGF injection burden in patients with diabetic macular edema[J]. Eur J Ophthalmol, 2018, 28(1): 68-73. DOI: 10.5301/ejo.5001000.
- 210. Abouhussein MA, Gomaa AR. Aflibercept plus micropulse laser versus aflibercept monotherapy for diabetic macular edema: 1-year results of a randomized clinical trial[J]. Int Ophthalmol, 2020, 40(5): 1147-1154. DOI: 10.1007/s10792-019-01280-9.
- 211. Furashova O, Strassburger P, Becker KA, et al. Efficacy of combining intravitreal injections of ranibizumab with micropulse diode laser versus intravitreal injections of ranibizumab alone in diabetic macular edema (ReCaLL): a single center, randomised, controlled, non-inferiority clinical trial[J]. BMC Ophthalmol, 2020, 20(1): 308. DOI: 10.1186/s12886-020-01576-w.
- 212. Khattab AM, Hagras SM, AbdElhamid A, et al. Aflibercept with adjuvant micropulsed yellow laser versus aflibercept monotherapy in diabetic macular edema[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(7): 1373-1380. DOI: 10.1007/s00417-019-04355-6.
- 213. Diabetic Retinopathy Clinical Research Network Writing Committee, Haller JA, Qin H, et al. Vitrectomy outcomes in eyes with diabetic macular edema and vitreomacular traction[J]. Ophthalmology, 2010, 117(6): 1087-1093. DOI: 10.1016/j.ophtha.2009.10.040.
- 214. Leibowitz HM, Krueger DE, Maunder LR, et al. The framingham eye study monograph: an ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975[J]. Surv Ophthalmol, 1980, 24(Suppl): S335-610.
- 215. Klein BE, Klein R, Moss SE. Incidence of cataract surgery in the wisconsin epidemiologic study of diabetic retinopathy[J]. Am J Ophthalmol, 1995, 119(3): 295-300. DOI: 10.1016/s0002-9394(14)71170-5.
- 216. Takamura Y, Kubo E, Akagi Y. Analysis of the effect of intravitreal bevacizumab injection on diabetic macular edema after cataract surgery[J]. Ophthalmology, 2009, 116(6): 1151-1157. DOI: 10.1016/j.ophtha.2009.01.014.
- 217. Yang B, Song Y. Therapeutic effects of phacoemulsification combined with intravitreal injection of triamcinolone in treating cataract with diabetic macular edema[J]. Int Eye Sci, 2015, 15: 1532-1535. DOI: 10.3980/j.issn.1672-5123.2015.9.10.
- 218. Lanzagorta-Aresti A, Palacios-Pozo E, Menezo Rozalen JL, et al. Prevention of vision loss after cataract surgery in diabetic macular edema with intravitreal bevacizumab: a pilot study[J]. Retina, 2009, 29(4): 530-535. DOI: 10.1097/IAE.0b013e31819c6302.
- 219. Wang J, Liu Y, Hu Y, et al. Clinical observation of phacoemulsification combined with intravitreal injection of conbercept in cataract patients with diabetic macular edema[J/OL]. J Ophthalmol, 2021, 2021: 8849730[2021-02-05]. https://pubmed.ncbi.nlm.nih.gov/33628483/. DOI: 10.1155/2021/8849730.
- 220. 中华医学会眼科学分会白内障及人工晶状体学组. 中国糖尿病患者白内障围手术期管理策略专家共识(2020年)[J]. 中华眼科杂志, 2020, 56(5): 337-342. DOI: 10.3760/cma.j.cn112142-20191106-00559.Cataract and Intraocular Lens Group, Ophthalmology Society of Chinese Medical Association. Expert consensus on perioperative cataract management strategies for diabetic patients in China (2020)[J]. Chin J Ophthalmol, 2020, 56(5): 337-342. DOI: 10.3760/cma.j.cn112142-20191106-00559.