- Department of Ophthalmology, Peking University First Hospital, Beijing 100034, China;
COVID-19 associated fundus lesions are mostly vascular occlusion or inflammatory changes. The affected vessels include both retinal macrovessels and microvessels, and the inflammatory changes are mainly autoimmune lesions. Clinically, the different lesions present as various fundus diseases, with varying degrees of impact on visual function. The mechanism of these lesions is considered to be related to direct injury of SARS-CoV-2, abnormal coagulation or inflammatory response caused by SARS-CoV-2. Awareness of fundus lesions associated to COVID-19 is helpful to figure out the pathophysiological mechanism of COVID-19 and promote in-depth studies for a deeper and complete understanding of the occurrence and full impact of COVID-19, emphasizing the importance of early prevention and control of the disease, and highlighting the significance of early intervention of the fundus diseases caused by COVID-19.
Citation: Zhu Ruilin, Yang Liu. COVID-19 related fundus disease. Chinese Journal of Ocular Fundus Diseases, 2023, 39(3): 254-259. doi: 10.3760/cma.j.cn511434-20230217-00072 Copy
1. | Msemburi W, Karlinsky A, Knutson V, et al. The WHO estimates of excess mortality associated with the COVID-19 pandemic[J]. Nature, 2023, 613(7942): 130-137. DOI: 10.1038/s41586-022-05522-2. |
2. | Rahman S, Montero MTV, Rowe K, et al. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence[J]. Expert Rev Clin Pharmacol, 2021, 14(5): 601-621. DOI: 10.1080/17512433.2021.1902303. |
3. | Jeong GU, Kwon HJ, Ng WH, et al. Ocular tropism of SARS-CoV-2 in animal models with retinal inflammation via neuronal invasion following intranasal inoculation[J]. Nat Commun, 2022, 13(1): 7675. DOI: 10.1038/s41467-022-35225-1. |
4. | 中华预防医学会公共卫生眼科学分会. 中国新型冠状病毒眼病防控专家共识(2022年)[J]. 中华眼科杂志, 2022, 58(3): 176-181. DOI: 10.3760/cma.j.cn112142-20211124-00561.Public Health Ophthalmology Branch of Chinese Preventive Medicine Association. Chinese expert consensus on prevention and control of COVID-19 eye disease (2022)[J]. Chin J Ophthalmol, 2022, 58(3): 176-181. DOI: 10.3760/cma.j.cn112142-20211124-00561. |
5. | Chen L, Deng C, Chen X, et al. Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: a cross-sectional study[J]. Acta Ophthalmol, 2020, 98(8): e951-e959. DOI: 10.1111/aos.14472. |
6. | Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China[J]. JAMA Ophthalmol, 2020, 138(5): 575-578. DOI: 10.1001/jamaophthalmol.2020.1291. |
7. | 刘艳, 王秀华, 明帅, 等. 新型冠状病毒肺炎疫情眼科相关研究热点分析[J]. 中华眼底病杂志, 2022, 38(7): 593-600. DOI: 10.3760/cma.j.cn511434-20220317-00152.Liu Y, Wang X, Ming S, et al. Research hot spots of ophthalmology-related coronavirus disease 2019[J]. Chin J Ocul Fundus Dis, 2022, 38(7): 593-600. DOI: 10.3760/cma.j.cn511434-20220317-00152. |
8. | Marinho PM, Marcos AAA, Romano AC, et al. Retinal findings in patients with COVID-19[J]. Lancet, 2020, 395(10237): 1610. DOI: 10.1016/s0140-6736(20)31014-x. |
9. | Sen M, Honavar SG, Sharma N, et al. COVID-19 and eye: a review of ophthalmic manifestations of COVID-19[J]. Indian J Ophthalmol, 2021, 69(3): 488-509. DOI: 10.4103/ijo.IJO_297_21. |
10. | Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280. DOI: 10.1016/j.cell.2020.02.052. |
11. | Zhou L, Xu Z, Guerra J, et al. Expression of the SARS-CoV-2 receptor ACE2 in human retina and diabetes-implications for retinopathy[J]. Invest Ophthalmol Vis Sci, 2021, 62(7): 6. DOI: 10.1167/iovs.62.7.6. |
12. | Sawant OB, Singh S, Wright RE 3rd, et al. Prevalence of SARS-CoV-2 in human post-mortem ocular tissues[J]. Ocul Surf, 2021, 19: 322-329. DOI: 10.1016/j.jtos.2020.11.002. |
13. | Casagrande M, Fitzek A, Spitzer M, et al. Detection of SARS-CoV-2 genomic and subgenomic RNA in retina and optic nerve of patients with COVID-19[J]. Br J Ophthalmol, 2022, 106(9): 1313-1317. DOI: 10.1136/bjophthalmol-2020-318618. |
14. | Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China[J]. JAMA Intern Med, 2020, 180(7): 934-943. DOI: 10.1001/jamainternmed.2020.0994. |
15. | Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19[J]. Lancet Haematol, 2020, 7(6): e438-e440. DOI: 10.1016/s2352-3026(20)30145-9. |
16. | Klok FA, Kruip M, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19[J]. Thromb Res, 2020, 191: 145-147. DOI: 10.1016/j.thromres.2020.04.013. |
17. | Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation[J]. Blood, 2020, 135(23): 2033-2040. DOI: 10.1182/blood.2020006000. |
18. | Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223): 507-513. DOI: 10.1016/s0140-6736(20)30211-7. |
19. | Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia[J]. J Thromb Haemost, 2020, 18(4): 844-847. DOI: 10.1111/jth.14768. |
20. | Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11): 1061-1069. DOI: 10.1001/jama.2020.1585. |
21. | Acharya S, Diamond M, Anwar S, et al. Unique case of central retinal artery occlusion secondary to COVID-19 disease[J/OL]. IDCases, 2020, 21: e00867[2020-06-18]. https://linkinghub.elsevier.com/retrieve/pii/S2214-2509(20)30175-X. DOI: 10.1016/j.idcr.2020.e00867. |
22. | Dumitrascu OM, Volod O, Bose S, et al. Acute ophthalmic artery occlusion in a COVID-19 patient on apixaban[J/OL]. J Stroke Cerebrovasc Dis, 2020, 29(8): 104982[2020-05-23]. https://linkinghub.elsevier.com/retrieve/pii/S1052-3057(20)30400-6. DOI: 10.1016/j.jstrokecerebrovasdis.2020.104982. |
23. | Sharma A, Parachuri N, Kumar N, et al. Myths and truths of the association of retinal vascular occlusion with COVID-19[J]. Retina, 2022, 42(3): 413-416. DOI: 10.1097/iae.0000000000003371. |
24. | Hu B, Huang S, Yin L. The cytokine storm and COVID-19[J]. J Med Virol, 2021, 93(1): 250-256. DOI: 10.1002/jmv.26232. |
25. | Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19[J]. Nat Med, 2020, 26(6): 842-844. DOI: 10.1038/s41591-020-0901-9. |
26. | Fajgenbaum DC, June CH. Cytokine storm[J]. N Engl J Med, 2020, 383(23): 2255-2273. DOI: 10.1056/NEJMra2026131. |
27. | Iba T, Connors JM, Levy JH. The coagulopathy, endotheliopathy, and vasculitis of COVID-19[J]. Inflamm Res, 2020, 69(12): 1181-1189. DOI: 10.1007/s00011-020-01401-6. |
28. | Bonaventura A, Vecchié A, Dagna L, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19[J]. Nat Rev Immunol, 2021, 21(5): 319-329. DOI: 10.1038/s41577-021-00536-9. |
29. | Jidigam VK, Singh R, Batoki JC, et al. Histopathological assessments reveal retinal vascular changes, inflammation, and gliosis in patients with lethal COVID-19[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(4): 1275-1288. DOI: 10.1007/s00417-021-05460-1. |
30. | Carvalho EM, Teixeira FHF, de Carvalho Mendes Paiva A, et al. Bilateral ampiginous choroiditis following confirmed SARS-CoV-2 infection[J/OL]. Ocul Immunol Inflamm, 2022: 1-4[2022-04-011]. https://www.tandfonline.com/doi/abs/10.1080/09273948.2022.2049317?journalCode=ioii20. DOI: 10.1080/09273948.2022.2049317. [published online ahead print]. |
31. | Jossy A, Jacob N, Sarkar S, et al. COVID-19-associated optic neuritis - a case series and review of literature[J]. Indian J Ophthalmol, 2022, 70(1): 310-316. DOI: 10.4103/ijo.IJO_2235_21. |
32. | Insausti-García A, Reche-Sainz JA, Ruiz-Arranz C, et al. Papillophlebitis in a COVID-19 patient: inflammation and hypercoagulable state[J]. Eur J Ophthalmol, 2022, 32(1): NP168-NP172. DOI: 10.1177/1120672120947591. |
33. | Jevnikar K, Meglič A, Lapajne L, et al. The impact of acute COVID-19 on the retinal microvasculature assessed with multimodal imaging[J/OL]. Graefe's Arch Clin Exp Ophthalmol, 2022: 1-11[2022-11-05]. https://europepmc.org/article/MED/36334115. DOI: 10.1007/s00417-022-05887-0. [published online ahead print]. |
34. | Invernizzi A, Torre A, Parrulli S, et al. Retinal findings in patients with COVID-19: results from the SERPICO-19 study[J/OL]. EClinicalMedicine, 2020, 27: 100550[2020-09-20]. https://linkinghub.elsevier.com/retrieve/pii/S2589-5370(20)30294-7. DOI: 10.1016/j.eclinm.2020.100550. |
35. | Tiryaki Demir S, Dalgic N, Keles Yesiltas S, et al. OCT and OCTA evaluation of vascular and morphological structures in the retina in recovered pediatric patients with COVID-19[J/OL]. Photodiagnosis Photodyn Ther, 2022, 40: 103157[2022-10-14]. https://linkinghub.elsevier.com/retrieve/pii/S1572-1000(22)00443-4. DOI: 10.1016/j.pdpdt.2022.103157. |
36. | Abrishami M, Daneshvar R, Emamverdian Z, et al. Spectral-domain optical coherence tomography assessment of retinal and choroidal changes in patients with coronavirus disease 2019: a case-control study[J]. J Ophthalmic Inflamm Infect, 2022, 12(1): 18. DOI: 10.1186/s12348-022-00297-z. |
37. | Dag Seker E, Erbahceci Timur IE. COVID-19: more than a respiratory virus, an optical coherence tomography study[J]. Int Ophthalmol, 2021, 41(11): 3815-3824. DOI: 10.1007/s10792-021-01952-5. |
38. | González-Zamora J, Bilbao-Malavé V, Gándara E, et al. Retinal microvascular impairment in COVID-19 bilateral pneumonia assessed by optical coherence tomography angiography[J]. Biomedicines, 2021, 9(3): 247. DOI: 10.3390/biomedicines9030247. |
39. | Erdem S, Karahan M, Ava S, et al. Evaluation of choroidal thickness in patients who have recovered from COVID-19[J]. Int Ophthalmol, 2022, 42(3): 841-846. DOI: 10.1007/s10792-021-02049-9. |
40. | Cetinkaya T, Kurt MM, Akpolat C. Assessment of retinal neurodegeneration and choroidal thickness in COVID-19 patients using swept-source OCT technology[J]. Klin Monbl Augenheilkd, 2021, 238(10): 1092-1097. DOI: 10.1055/a-1340-0066. |
41. | Gül FC, Timurkaan ES. Evaluation of choroidal thickness with OCT in COVID-19 patients with high D-dimer levels[J/OL]. Sci Rep, 2022, 12(1): 16826[2022-10-18]. https://europepmc.org/article/MED/36258025. DOI: 10.1038/s41598-022-21579-5. |
42. | Abrishami M, Hassanpour K, Zamani G, et al. Longitudinal alterations of retinal and choroidal structure in patients recovered from COVID-19[J/OL]. J Ophthalmol, 2022, 2022: 4123328[2022-03-25]. https://europepmc.org/article/MED/35369001. DOI: 10.1155/2022/4123328. |
43. | Hepokur M, Gunes M, Durmus E, et al. Long-term follow-up of choroidal changes following COVID-19 infection: analysis of choroidal thickness and choroidal vascularity index[J]. Can J Ophthalmol, 2023, 58(1): 59-65. DOI: 10.1016/j.jcjo.2021.06.020. |
44. | Teo KY, Invernizzi A, Staurenghi G, et al. COVID-19-related retinal micro-vasculopathy - a review of current evidence[J]. Am J Ophthalmol, 2022, 235: 98-110. DOI: 10.1016/j.ajo.2021.09.019. |
45. | Dipu T, Goel R, Arora R, et al. Ocular sequelae in severe COVID-19 recovered patients of second wave[J]. Indian J Ophthalmol, 2022, 70(5): 1780-1786. DOI: 10.4103/ijo.IJO_2882_21. |
46. | Banderas García S, Aragón D, Azarfane B, et al. Persistent reduction of retinal microvascular vessel density in patients with moderate and severe COVID-19 disease[J/OL]. BMJ Open Ophthalmol, 2022, 7(1): e000867[2022-01-11]. https://doi.org/10.1136/bmjophth-2021-000867. DOI: 10.1136/bmjophth-2021-000867. |
47. | Zapata M, Banderas García S, Sánchez-Moltalvá A, et al. Retinal microvascular abnormalities in patients after COVID-19 depending on disease severity[J]. Br J Ophthalmol, 2022, 106(4): 559-563. DOI: 10.1136/bjophthalmol-2020-317953. |
48. | Guemes-Villahoz N, Burgos-Blasco B, Vidal-Villegas B, et al. Reduced retinal vessel density in COVID-19 patients and elevated D-dimer levels during the acute phase of the infection[J]. Med Clin (Barc), 2021, 156(11): 541-546. DOI: 10.1016/j.medcli.2020.12.006. |
49. | Wang S, Wang J, Hu J, et al. Retinal microvascular impairment in COVID-19 patients: a meta-analysis[J/OL]. Immun Inflamm Dis, 2022, 10(6): e619[2022-06-01]. https://europepmc.org/article/MED/35634955. DOI: 10.1002/iid3.619. |
50. | Riotto E, Mégevand V, Mégevand A, et al. Retinal manifestations in patients with COVID-19: a prospective cohort study[J]. J Clin Med, 2022, 11(7): 1828. DOI: 10.3390/jcm11071828. |
51. | Bansal R, Markan A, Gautam N, et al. Retinal involvement in COVID-19: results from a prospective retina screening program in the acute and convalescent phase[J/OL]. Front Med (Lausanne), 2021, 8: 681942[2021-06-24]. https://europepmc.org/article/MED/34249972. DOI: 10.3389/fmed.2021.681942. |
52. | Pereira LA, Soares LCM, Nascimento PA, et al. Retinal findings in hospitalised patients with severe COVID-19[J]. Br J Ophthalmol, 2022, 106(1): 102-105. DOI: 10.1136/bjophthalmol-2020-317576. |
53. | Been Sayeed SKJ, Chandra Das S, Mahmud R, et al. Acute ischemic stroke with central retinal artery occlusion as a rare presentation of COVID-19 disease[J/OL]. Cureus, 2021, 13(8): e17469[2021-08-26]. https://europepmc.org/article/MED/34589363. DOI: 10.7759/cureus.17469. |
54. | Ateş O, Yıldırım M, Yıldırım K. Branch retinal artery occlusion in patient with COVID-19: case report[J]. Korean J Ophthalmol, 2021, 35(6): 484-485. DOI: 10.3341/kjo.2021.0008. |
55. | Bapaye MM, Nair AG, Bapaye CM, et al. Simultaneous bilateral central retinal artery occlusion following COVID-19 infection[J]. Ocul Immunol Inflamm, 2021, 29(4): 671-674. DOI: 10.1080/09273948.2021.1891262. |
56. | Modjtahedi BS, Do D, Luong TQ, et al. Changes in the incidence of retinal vascular occlusions after COVID-19 diagnosis[J]. JAMA Ophthalmol, 2022, 140(5): 523-527. DOI: 10.1001/jamaophthalmol.2022.0632. |
57. | Al-Moujahed A, Boucher N, Fernando R, et al. Incidence of retinal artery and vein occlusions during the COVID-19 pandemic[J]. Ophthalmic Surg Lasers Imaging Retina, 2022, 53(1): 22-30. DOI: 10.3928/23258160-20211209-01. |
58. | Fonollosa A, Hernández-Rodríguez J, Cuadros C, et al. Characterizing COVID-19-related retinal vascular occlusions: a case series and review of the literature[J]. Retina, 2022, 42(3): 465-475. DOI: 10.1097/iae.0000000000003327. |
59. | Jalink MB, Bronkhorst IHG. A sudden rise of patients with acute macular neuroretinopathy during the COVID-19 pandemic[J]. Case Rep Ophthalmol, 2022, 13(1): 96-103. DOI: 10.1159/000522080. |
60. | Azar G, Bonnin S, Vasseur V, et al. Did the COVID-19 pandemic increase the incidence of acute macular neuroretinopathy?[J]. J Clin Med, 2021, 10(21): 5038. DOI: 10.3390/jcm10215038. |
61. | Dinh RH, Tsui E, Wieder MS, et al. Acute macular neuroretinopathy and coronavirus disease 2019[J]. Ophthalmol Retina, 2023, 7(2): 198-200. DOI: 10.1016/j.oret.2022.09.005. |
62. | Virgo J, Mohamed M. Paracentral acute middle maculopathy and acute macular neuroretinopathy following SARS-CoV-2 infection[J]. Eye (Lond), 2020, 34(12): 2352-2353. DOI: 10.1038/s41433-020-1069-8. |
63. | Naughton A, Ong AY, Gkika T, et al. Bilateral paracentral acute middle maculopathy in a SARS-CoV-2-positive patient[J]. Postgrad Med J, 2022, 98(e2): e105-e106. DOI: 10.1136/postgradmedj-2021-140500. |
64. | David JA, Fivgas GD. Acute macular neuroretinopathy associated with COVID-19 infection[J/OL]. Am J Ophthalmol Case Rep, 2021, 24: 101232[2021-11-10]. https://linkinghub.elsevier.com/retrieve/pii/S2451-9936(21)00241-3. DOI: 10.1016/j.ajoc.2021.101232. |
65. | Bellur S, Zeleny A, Patronas M, et al. Bilateral acute macular neuroretinopathy after COVID-19 vaccination and infection[J/OL]. Ocul Immunol Inflamm, 2022: 1-4[2022-08-01]. https://www.tandfonline.com/doi/abs/10.1080/09273948.2022.2093753?journalCode=ioii20. DOI: 10.1080/09273948.2022.2093753. |
66. | Giacuzzo C, Eandi CM, Kawasaki A. Bilateral acute macular neuroretinopathy following COVID-19 infection[J]. Acta Ophthalmol, 2022, 100(2): e611-e612. DOI: 10.1111/aos.14913. |
67. | Deshmukh R, Raharja A, Rahman F, et al. Optical coherence tomography angiography-confirmed paracentral acute middle maculopathy associated with SARS-COV-2 infection[J/OL]. J Neuroophthalmol, 2021, 2021: E1[2021-11-16]. https://europepmc.org/article/MED/34803142. DOI: 10.1097/wno.0000000000001479. [published online ahead of print]. |
68. | Agrawal A, McKibbin MA. Purtscher's and Purtscher-like retinopathies: a review[J]. Surv Ophthalmol, 2006, 51(2): 129-136. DOI: 10.1016/j.survophthal.2005.12.003. |
69. | Mbekeani JN, Raval NK, Vo TA, et al. Purtscher-like retinopathy in a patient with COVID-19-associated coagulopathy[J]. Arq Bras Oftalmol, 2022, 85(5): 513-516. DOI: 10.5935/0004-2749.2020-0328. |
70. | Pastore MR, Furlanis G, Tognetto D. Bilateral Purtscher-like retinopathy associated with SARS-CoV-2 infection[J/OL]. JAMA Ophthalmol, 2022, 140(2): e214979[2022-02-17]. https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2789254. DOI: 10.1001/jamaophthalmol.2021.4979. |
71. | Shroff D, Kumar S, Naidu A, et al. Unilateral Purtscher-like retinopathy post-COVID-19[J]. Indian J Ophthalmol, 2022, 70(10): 3710-3712. DOI: 10.4103/ijo.IJO_1486_22. |
72. | Rahman EZ, Shah P, Ong JE, et al. Purtscher-like retinopathy in a patient with COVID-19 and disseminated intravascular coagulation[J/OL]. Am J Ophthalmol Case Rep, 2021, 24: 101229[2021-11-11]. https://linkinghub.elsevier.com/retrieve/pii/S2451-9936(21)00238-3. DOI: 10.1016/j.ajoc.2021.101229. |
73. | Crawford CM, Igboeli O. A review of the inflammatory chorioretinopathies: the white dot syndromes[J/OL]. ISRN Inflamm, 2013, 2013: 783190[2013-10-31]. https://europepmc.org/abstract/MED/24294536. DOI: 10.1155/2013/783190. |
74. | Gallo B, Talks JS, Pandit RJ, et al. Multiple evanescent white dot syndrome and choroidal neovascularization following SARS-COV-2 infection in a patient on Dabrafenib and Trametinib[J/OL]. Ocul Immunol Inflamm, 2022: 1-8[2022-02-28]. https://pubmed.ncbi.nlm.nih.gov/35226581/. DOI: 10.1080/09273948.2022.2042320. |
75. | Jain A, Shilpa IN, Biswas J. Multiple evanescent white dot syndrome following SARS-CoV-2 infection - a case report[J]. Indian J Ophthalmol, 2022, 70(4): 1418-1420. DOI: 10.4103/ijo.IJO_3093_21. |
76. | Miyata M, Ooto S, Muraoka Y. Punctate inner choroidopathy immediately after COVID-19 infection: a case report[J]. BMC Ophthalmol, 2022, 22(1): 297. DOI: 10.1186/s12886-022-02514-8. |
77. | Providência J, Fonseca C, Henriques F, et al. Serpiginous choroiditis presenting after SARS-CoV-2 infection: a new immunological trigger?[J]. Eur J Ophthalmol, 2022, 32(1): NP97-NP101. DOI: 10.1177/1120672120977817. |
78. | de Souza EC, de Campos VE, Duker JS. Atypical unilateral multifocal choroiditis in a COVID-19 positive patient[J/OL]. Am J Ophthalmol Case Rep, 2021, 22: 101034[2021-02-19]. https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S2451993621000256. DOI: 10.1016/j.ajoc.2021.101034. |
79. | Nicolai M, Carpenè MJ, Lassandro NV, et al. Punctate inner choroidopathy reactivation following COVID-19: a case report[J]. Eur J Ophthalmol, 2022, 32(4): NP6-NP10. DOI: 10.1177/11206721211028750. |
80. | Azab MA, Hasaneen SF, Hanifa H, et al. Optic neuritis post-COVID-19 infection. A case report with meta-analysis[J/OL]. Interdiscip Neurosurg, 2021, 26: 101320[2021-07-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295047/. DOI: 10.1016/j.inat.2021.101320. |
81. | Sawalha K, Adeodokun S, Kamoga GR. COVID-19-induced acute bilateral optic neuritis[J/OL]. J Investig Med High Impact Case Rep, 2020, 8: 2324709620976018[2020-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705770/. DOI: 10.1177/2324709620976018. |
82. | Tsouris Z, Provatas A, Bakirtzis C, et al. Anti-MOG positive bilateral optic neuritis and brainstem encephalitis secondary to COVID-19 infection: a case report[J]. Neurol Int, 2022, 14(4): 991-996. DOI: 10.3390/neurolint14040078. |
83. | 刘佩, 宋沉生, 吴松笛. 新型冠状病毒病神经眼科表现的研究现状[J]. 中华眼底病杂志, 2021, 37(10): 812-817. DOI: 10.3760/cma.j.cn511434-20210513-00252.Liu P, Song CS, Wu SD. Reserch progress of neuro-ophthalmic manifestations of coronavirus disease 2019[J]. Chin J Ocul Fundus Dis, 2021, 37(10): 812-817. DOI: 10.3760/cma.j.cn511434-20210513-00252. |
84. | Colantonio MA, Nwafor DC, Jaiswal S, et al. Myelin oligodendrocyte glycoprotein antibody-associated optic neuritis and myelitis in COVID-19: a case report and a review of the literature[J]. Egypt J Neurol Psychiatr Neurosurg, 2022, 58(1): 62. DOI: 10.1186/s41983-022-00496-4. |
- 1. Msemburi W, Karlinsky A, Knutson V, et al. The WHO estimates of excess mortality associated with the COVID-19 pandemic[J]. Nature, 2023, 613(7942): 130-137. DOI: 10.1038/s41586-022-05522-2.
- 2. Rahman S, Montero MTV, Rowe K, et al. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence[J]. Expert Rev Clin Pharmacol, 2021, 14(5): 601-621. DOI: 10.1080/17512433.2021.1902303.
- 3. Jeong GU, Kwon HJ, Ng WH, et al. Ocular tropism of SARS-CoV-2 in animal models with retinal inflammation via neuronal invasion following intranasal inoculation[J]. Nat Commun, 2022, 13(1): 7675. DOI: 10.1038/s41467-022-35225-1.
- 4. 中华预防医学会公共卫生眼科学分会. 中国新型冠状病毒眼病防控专家共识(2022年)[J]. 中华眼科杂志, 2022, 58(3): 176-181. DOI: 10.3760/cma.j.cn112142-20211124-00561.Public Health Ophthalmology Branch of Chinese Preventive Medicine Association. Chinese expert consensus on prevention and control of COVID-19 eye disease (2022)[J]. Chin J Ophthalmol, 2022, 58(3): 176-181. DOI: 10.3760/cma.j.cn112142-20211124-00561.
- 5. Chen L, Deng C, Chen X, et al. Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: a cross-sectional study[J]. Acta Ophthalmol, 2020, 98(8): e951-e959. DOI: 10.1111/aos.14472.
- 6. Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China[J]. JAMA Ophthalmol, 2020, 138(5): 575-578. DOI: 10.1001/jamaophthalmol.2020.1291.
- 7. 刘艳, 王秀华, 明帅, 等. 新型冠状病毒肺炎疫情眼科相关研究热点分析[J]. 中华眼底病杂志, 2022, 38(7): 593-600. DOI: 10.3760/cma.j.cn511434-20220317-00152.Liu Y, Wang X, Ming S, et al. Research hot spots of ophthalmology-related coronavirus disease 2019[J]. Chin J Ocul Fundus Dis, 2022, 38(7): 593-600. DOI: 10.3760/cma.j.cn511434-20220317-00152.
- 8. Marinho PM, Marcos AAA, Romano AC, et al. Retinal findings in patients with COVID-19[J]. Lancet, 2020, 395(10237): 1610. DOI: 10.1016/s0140-6736(20)31014-x.
- 9. Sen M, Honavar SG, Sharma N, et al. COVID-19 and eye: a review of ophthalmic manifestations of COVID-19[J]. Indian J Ophthalmol, 2021, 69(3): 488-509. DOI: 10.4103/ijo.IJO_297_21.
- 10. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280. DOI: 10.1016/j.cell.2020.02.052.
- 11. Zhou L, Xu Z, Guerra J, et al. Expression of the SARS-CoV-2 receptor ACE2 in human retina and diabetes-implications for retinopathy[J]. Invest Ophthalmol Vis Sci, 2021, 62(7): 6. DOI: 10.1167/iovs.62.7.6.
- 12. Sawant OB, Singh S, Wright RE 3rd, et al. Prevalence of SARS-CoV-2 in human post-mortem ocular tissues[J]. Ocul Surf, 2021, 19: 322-329. DOI: 10.1016/j.jtos.2020.11.002.
- 13. Casagrande M, Fitzek A, Spitzer M, et al. Detection of SARS-CoV-2 genomic and subgenomic RNA in retina and optic nerve of patients with COVID-19[J]. Br J Ophthalmol, 2022, 106(9): 1313-1317. DOI: 10.1136/bjophthalmol-2020-318618.
- 14. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China[J]. JAMA Intern Med, 2020, 180(7): 934-943. DOI: 10.1001/jamainternmed.2020.0994.
- 15. Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19[J]. Lancet Haematol, 2020, 7(6): e438-e440. DOI: 10.1016/s2352-3026(20)30145-9.
- 16. Klok FA, Kruip M, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19[J]. Thromb Res, 2020, 191: 145-147. DOI: 10.1016/j.thromres.2020.04.013.
- 17. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation[J]. Blood, 2020, 135(23): 2033-2040. DOI: 10.1182/blood.2020006000.
- 18. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223): 507-513. DOI: 10.1016/s0140-6736(20)30211-7.
- 19. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia[J]. J Thromb Haemost, 2020, 18(4): 844-847. DOI: 10.1111/jth.14768.
- 20. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11): 1061-1069. DOI: 10.1001/jama.2020.1585.
- 21. Acharya S, Diamond M, Anwar S, et al. Unique case of central retinal artery occlusion secondary to COVID-19 disease[J/OL]. IDCases, 2020, 21: e00867[2020-06-18]. https://linkinghub.elsevier.com/retrieve/pii/S2214-2509(20)30175-X. DOI: 10.1016/j.idcr.2020.e00867.
- 22. Dumitrascu OM, Volod O, Bose S, et al. Acute ophthalmic artery occlusion in a COVID-19 patient on apixaban[J/OL]. J Stroke Cerebrovasc Dis, 2020, 29(8): 104982[2020-05-23]. https://linkinghub.elsevier.com/retrieve/pii/S1052-3057(20)30400-6. DOI: 10.1016/j.jstrokecerebrovasdis.2020.104982.
- 23. Sharma A, Parachuri N, Kumar N, et al. Myths and truths of the association of retinal vascular occlusion with COVID-19[J]. Retina, 2022, 42(3): 413-416. DOI: 10.1097/iae.0000000000003371.
- 24. Hu B, Huang S, Yin L. The cytokine storm and COVID-19[J]. J Med Virol, 2021, 93(1): 250-256. DOI: 10.1002/jmv.26232.
- 25. Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19[J]. Nat Med, 2020, 26(6): 842-844. DOI: 10.1038/s41591-020-0901-9.
- 26. Fajgenbaum DC, June CH. Cytokine storm[J]. N Engl J Med, 2020, 383(23): 2255-2273. DOI: 10.1056/NEJMra2026131.
- 27. Iba T, Connors JM, Levy JH. The coagulopathy, endotheliopathy, and vasculitis of COVID-19[J]. Inflamm Res, 2020, 69(12): 1181-1189. DOI: 10.1007/s00011-020-01401-6.
- 28. Bonaventura A, Vecchié A, Dagna L, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19[J]. Nat Rev Immunol, 2021, 21(5): 319-329. DOI: 10.1038/s41577-021-00536-9.
- 29. Jidigam VK, Singh R, Batoki JC, et al. Histopathological assessments reveal retinal vascular changes, inflammation, and gliosis in patients with lethal COVID-19[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(4): 1275-1288. DOI: 10.1007/s00417-021-05460-1.
- 30. Carvalho EM, Teixeira FHF, de Carvalho Mendes Paiva A, et al. Bilateral ampiginous choroiditis following confirmed SARS-CoV-2 infection[J/OL]. Ocul Immunol Inflamm, 2022: 1-4[2022-04-011]. https://www.tandfonline.com/doi/abs/10.1080/09273948.2022.2049317?journalCode=ioii20. DOI: 10.1080/09273948.2022.2049317. [published online ahead print].
- 31. Jossy A, Jacob N, Sarkar S, et al. COVID-19-associated optic neuritis - a case series and review of literature[J]. Indian J Ophthalmol, 2022, 70(1): 310-316. DOI: 10.4103/ijo.IJO_2235_21.
- 32. Insausti-García A, Reche-Sainz JA, Ruiz-Arranz C, et al. Papillophlebitis in a COVID-19 patient: inflammation and hypercoagulable state[J]. Eur J Ophthalmol, 2022, 32(1): NP168-NP172. DOI: 10.1177/1120672120947591.
- 33. Jevnikar K, Meglič A, Lapajne L, et al. The impact of acute COVID-19 on the retinal microvasculature assessed with multimodal imaging[J/OL]. Graefe's Arch Clin Exp Ophthalmol, 2022: 1-11[2022-11-05]. https://europepmc.org/article/MED/36334115. DOI: 10.1007/s00417-022-05887-0. [published online ahead print].
- 34. Invernizzi A, Torre A, Parrulli S, et al. Retinal findings in patients with COVID-19: results from the SERPICO-19 study[J/OL]. EClinicalMedicine, 2020, 27: 100550[2020-09-20]. https://linkinghub.elsevier.com/retrieve/pii/S2589-5370(20)30294-7. DOI: 10.1016/j.eclinm.2020.100550.
- 35. Tiryaki Demir S, Dalgic N, Keles Yesiltas S, et al. OCT and OCTA evaluation of vascular and morphological structures in the retina in recovered pediatric patients with COVID-19[J/OL]. Photodiagnosis Photodyn Ther, 2022, 40: 103157[2022-10-14]. https://linkinghub.elsevier.com/retrieve/pii/S1572-1000(22)00443-4. DOI: 10.1016/j.pdpdt.2022.103157.
- 36. Abrishami M, Daneshvar R, Emamverdian Z, et al. Spectral-domain optical coherence tomography assessment of retinal and choroidal changes in patients with coronavirus disease 2019: a case-control study[J]. J Ophthalmic Inflamm Infect, 2022, 12(1): 18. DOI: 10.1186/s12348-022-00297-z.
- 37. Dag Seker E, Erbahceci Timur IE. COVID-19: more than a respiratory virus, an optical coherence tomography study[J]. Int Ophthalmol, 2021, 41(11): 3815-3824. DOI: 10.1007/s10792-021-01952-5.
- 38. González-Zamora J, Bilbao-Malavé V, Gándara E, et al. Retinal microvascular impairment in COVID-19 bilateral pneumonia assessed by optical coherence tomography angiography[J]. Biomedicines, 2021, 9(3): 247. DOI: 10.3390/biomedicines9030247.
- 39. Erdem S, Karahan M, Ava S, et al. Evaluation of choroidal thickness in patients who have recovered from COVID-19[J]. Int Ophthalmol, 2022, 42(3): 841-846. DOI: 10.1007/s10792-021-02049-9.
- 40. Cetinkaya T, Kurt MM, Akpolat C. Assessment of retinal neurodegeneration and choroidal thickness in COVID-19 patients using swept-source OCT technology[J]. Klin Monbl Augenheilkd, 2021, 238(10): 1092-1097. DOI: 10.1055/a-1340-0066.
- 41. Gül FC, Timurkaan ES. Evaluation of choroidal thickness with OCT in COVID-19 patients with high D-dimer levels[J/OL]. Sci Rep, 2022, 12(1): 16826[2022-10-18]. https://europepmc.org/article/MED/36258025. DOI: 10.1038/s41598-022-21579-5.
- 42. Abrishami M, Hassanpour K, Zamani G, et al. Longitudinal alterations of retinal and choroidal structure in patients recovered from COVID-19[J/OL]. J Ophthalmol, 2022, 2022: 4123328[2022-03-25]. https://europepmc.org/article/MED/35369001. DOI: 10.1155/2022/4123328.
- 43. Hepokur M, Gunes M, Durmus E, et al. Long-term follow-up of choroidal changes following COVID-19 infection: analysis of choroidal thickness and choroidal vascularity index[J]. Can J Ophthalmol, 2023, 58(1): 59-65. DOI: 10.1016/j.jcjo.2021.06.020.
- 44. Teo KY, Invernizzi A, Staurenghi G, et al. COVID-19-related retinal micro-vasculopathy - a review of current evidence[J]. Am J Ophthalmol, 2022, 235: 98-110. DOI: 10.1016/j.ajo.2021.09.019.
- 45. Dipu T, Goel R, Arora R, et al. Ocular sequelae in severe COVID-19 recovered patients of second wave[J]. Indian J Ophthalmol, 2022, 70(5): 1780-1786. DOI: 10.4103/ijo.IJO_2882_21.
- 46. Banderas García S, Aragón D, Azarfane B, et al. Persistent reduction of retinal microvascular vessel density in patients with moderate and severe COVID-19 disease[J/OL]. BMJ Open Ophthalmol, 2022, 7(1): e000867[2022-01-11]. https://doi.org/10.1136/bmjophth-2021-000867. DOI: 10.1136/bmjophth-2021-000867.
- 47. Zapata M, Banderas García S, Sánchez-Moltalvá A, et al. Retinal microvascular abnormalities in patients after COVID-19 depending on disease severity[J]. Br J Ophthalmol, 2022, 106(4): 559-563. DOI: 10.1136/bjophthalmol-2020-317953.
- 48. Guemes-Villahoz N, Burgos-Blasco B, Vidal-Villegas B, et al. Reduced retinal vessel density in COVID-19 patients and elevated D-dimer levels during the acute phase of the infection[J]. Med Clin (Barc), 2021, 156(11): 541-546. DOI: 10.1016/j.medcli.2020.12.006.
- 49. Wang S, Wang J, Hu J, et al. Retinal microvascular impairment in COVID-19 patients: a meta-analysis[J/OL]. Immun Inflamm Dis, 2022, 10(6): e619[2022-06-01]. https://europepmc.org/article/MED/35634955. DOI: 10.1002/iid3.619.
- 50. Riotto E, Mégevand V, Mégevand A, et al. Retinal manifestations in patients with COVID-19: a prospective cohort study[J]. J Clin Med, 2022, 11(7): 1828. DOI: 10.3390/jcm11071828.
- 51. Bansal R, Markan A, Gautam N, et al. Retinal involvement in COVID-19: results from a prospective retina screening program in the acute and convalescent phase[J/OL]. Front Med (Lausanne), 2021, 8: 681942[2021-06-24]. https://europepmc.org/article/MED/34249972. DOI: 10.3389/fmed.2021.681942.
- 52. Pereira LA, Soares LCM, Nascimento PA, et al. Retinal findings in hospitalised patients with severe COVID-19[J]. Br J Ophthalmol, 2022, 106(1): 102-105. DOI: 10.1136/bjophthalmol-2020-317576.
- 53. Been Sayeed SKJ, Chandra Das S, Mahmud R, et al. Acute ischemic stroke with central retinal artery occlusion as a rare presentation of COVID-19 disease[J/OL]. Cureus, 2021, 13(8): e17469[2021-08-26]. https://europepmc.org/article/MED/34589363. DOI: 10.7759/cureus.17469.
- 54. Ateş O, Yıldırım M, Yıldırım K. Branch retinal artery occlusion in patient with COVID-19: case report[J]. Korean J Ophthalmol, 2021, 35(6): 484-485. DOI: 10.3341/kjo.2021.0008.
- 55. Bapaye MM, Nair AG, Bapaye CM, et al. Simultaneous bilateral central retinal artery occlusion following COVID-19 infection[J]. Ocul Immunol Inflamm, 2021, 29(4): 671-674. DOI: 10.1080/09273948.2021.1891262.
- 56. Modjtahedi BS, Do D, Luong TQ, et al. Changes in the incidence of retinal vascular occlusions after COVID-19 diagnosis[J]. JAMA Ophthalmol, 2022, 140(5): 523-527. DOI: 10.1001/jamaophthalmol.2022.0632.
- 57. Al-Moujahed A, Boucher N, Fernando R, et al. Incidence of retinal artery and vein occlusions during the COVID-19 pandemic[J]. Ophthalmic Surg Lasers Imaging Retina, 2022, 53(1): 22-30. DOI: 10.3928/23258160-20211209-01.
- 58. Fonollosa A, Hernández-Rodríguez J, Cuadros C, et al. Characterizing COVID-19-related retinal vascular occlusions: a case series and review of the literature[J]. Retina, 2022, 42(3): 465-475. DOI: 10.1097/iae.0000000000003327.
- 59. Jalink MB, Bronkhorst IHG. A sudden rise of patients with acute macular neuroretinopathy during the COVID-19 pandemic[J]. Case Rep Ophthalmol, 2022, 13(1): 96-103. DOI: 10.1159/000522080.
- 60. Azar G, Bonnin S, Vasseur V, et al. Did the COVID-19 pandemic increase the incidence of acute macular neuroretinopathy?[J]. J Clin Med, 2021, 10(21): 5038. DOI: 10.3390/jcm10215038.
- 61. Dinh RH, Tsui E, Wieder MS, et al. Acute macular neuroretinopathy and coronavirus disease 2019[J]. Ophthalmol Retina, 2023, 7(2): 198-200. DOI: 10.1016/j.oret.2022.09.005.
- 62. Virgo J, Mohamed M. Paracentral acute middle maculopathy and acute macular neuroretinopathy following SARS-CoV-2 infection[J]. Eye (Lond), 2020, 34(12): 2352-2353. DOI: 10.1038/s41433-020-1069-8.
- 63. Naughton A, Ong AY, Gkika T, et al. Bilateral paracentral acute middle maculopathy in a SARS-CoV-2-positive patient[J]. Postgrad Med J, 2022, 98(e2): e105-e106. DOI: 10.1136/postgradmedj-2021-140500.
- 64. David JA, Fivgas GD. Acute macular neuroretinopathy associated with COVID-19 infection[J/OL]. Am J Ophthalmol Case Rep, 2021, 24: 101232[2021-11-10]. https://linkinghub.elsevier.com/retrieve/pii/S2451-9936(21)00241-3. DOI: 10.1016/j.ajoc.2021.101232.
- 65. Bellur S, Zeleny A, Patronas M, et al. Bilateral acute macular neuroretinopathy after COVID-19 vaccination and infection[J/OL]. Ocul Immunol Inflamm, 2022: 1-4[2022-08-01]. https://www.tandfonline.com/doi/abs/10.1080/09273948.2022.2093753?journalCode=ioii20. DOI: 10.1080/09273948.2022.2093753.
- 66. Giacuzzo C, Eandi CM, Kawasaki A. Bilateral acute macular neuroretinopathy following COVID-19 infection[J]. Acta Ophthalmol, 2022, 100(2): e611-e612. DOI: 10.1111/aos.14913.
- 67. Deshmukh R, Raharja A, Rahman F, et al. Optical coherence tomography angiography-confirmed paracentral acute middle maculopathy associated with SARS-COV-2 infection[J/OL]. J Neuroophthalmol, 2021, 2021: E1[2021-11-16]. https://europepmc.org/article/MED/34803142. DOI: 10.1097/wno.0000000000001479. [published online ahead of print].
- 68. Agrawal A, McKibbin MA. Purtscher's and Purtscher-like retinopathies: a review[J]. Surv Ophthalmol, 2006, 51(2): 129-136. DOI: 10.1016/j.survophthal.2005.12.003.
- 69. Mbekeani JN, Raval NK, Vo TA, et al. Purtscher-like retinopathy in a patient with COVID-19-associated coagulopathy[J]. Arq Bras Oftalmol, 2022, 85(5): 513-516. DOI: 10.5935/0004-2749.2020-0328.
- 70. Pastore MR, Furlanis G, Tognetto D. Bilateral Purtscher-like retinopathy associated with SARS-CoV-2 infection[J/OL]. JAMA Ophthalmol, 2022, 140(2): e214979[2022-02-17]. https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2789254. DOI: 10.1001/jamaophthalmol.2021.4979.
- 71. Shroff D, Kumar S, Naidu A, et al. Unilateral Purtscher-like retinopathy post-COVID-19[J]. Indian J Ophthalmol, 2022, 70(10): 3710-3712. DOI: 10.4103/ijo.IJO_1486_22.
- 72. Rahman EZ, Shah P, Ong JE, et al. Purtscher-like retinopathy in a patient with COVID-19 and disseminated intravascular coagulation[J/OL]. Am J Ophthalmol Case Rep, 2021, 24: 101229[2021-11-11]. https://linkinghub.elsevier.com/retrieve/pii/S2451-9936(21)00238-3. DOI: 10.1016/j.ajoc.2021.101229.
- 73. Crawford CM, Igboeli O. A review of the inflammatory chorioretinopathies: the white dot syndromes[J/OL]. ISRN Inflamm, 2013, 2013: 783190[2013-10-31]. https://europepmc.org/abstract/MED/24294536. DOI: 10.1155/2013/783190.
- 74. Gallo B, Talks JS, Pandit RJ, et al. Multiple evanescent white dot syndrome and choroidal neovascularization following SARS-COV-2 infection in a patient on Dabrafenib and Trametinib[J/OL]. Ocul Immunol Inflamm, 2022: 1-8[2022-02-28]. https://pubmed.ncbi.nlm.nih.gov/35226581/. DOI: 10.1080/09273948.2022.2042320.
- 75. Jain A, Shilpa IN, Biswas J. Multiple evanescent white dot syndrome following SARS-CoV-2 infection - a case report[J]. Indian J Ophthalmol, 2022, 70(4): 1418-1420. DOI: 10.4103/ijo.IJO_3093_21.
- 76. Miyata M, Ooto S, Muraoka Y. Punctate inner choroidopathy immediately after COVID-19 infection: a case report[J]. BMC Ophthalmol, 2022, 22(1): 297. DOI: 10.1186/s12886-022-02514-8.
- 77. Providência J, Fonseca C, Henriques F, et al. Serpiginous choroiditis presenting after SARS-CoV-2 infection: a new immunological trigger?[J]. Eur J Ophthalmol, 2022, 32(1): NP97-NP101. DOI: 10.1177/1120672120977817.
- 78. de Souza EC, de Campos VE, Duker JS. Atypical unilateral multifocal choroiditis in a COVID-19 positive patient[J/OL]. Am J Ophthalmol Case Rep, 2021, 22: 101034[2021-02-19]. https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S2451993621000256. DOI: 10.1016/j.ajoc.2021.101034.
- 79. Nicolai M, Carpenè MJ, Lassandro NV, et al. Punctate inner choroidopathy reactivation following COVID-19: a case report[J]. Eur J Ophthalmol, 2022, 32(4): NP6-NP10. DOI: 10.1177/11206721211028750.
- 80. Azab MA, Hasaneen SF, Hanifa H, et al. Optic neuritis post-COVID-19 infection. A case report with meta-analysis[J/OL]. Interdiscip Neurosurg, 2021, 26: 101320[2021-07-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295047/. DOI: 10.1016/j.inat.2021.101320.
- 81. Sawalha K, Adeodokun S, Kamoga GR. COVID-19-induced acute bilateral optic neuritis[J/OL]. J Investig Med High Impact Case Rep, 2020, 8: 2324709620976018[2020-11-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705770/. DOI: 10.1177/2324709620976018.
- 82. Tsouris Z, Provatas A, Bakirtzis C, et al. Anti-MOG positive bilateral optic neuritis and brainstem encephalitis secondary to COVID-19 infection: a case report[J]. Neurol Int, 2022, 14(4): 991-996. DOI: 10.3390/neurolint14040078.
- 83. 刘佩, 宋沉生, 吴松笛. 新型冠状病毒病神经眼科表现的研究现状[J]. 中华眼底病杂志, 2021, 37(10): 812-817. DOI: 10.3760/cma.j.cn511434-20210513-00252.Liu P, Song CS, Wu SD. Reserch progress of neuro-ophthalmic manifestations of coronavirus disease 2019[J]. Chin J Ocul Fundus Dis, 2021, 37(10): 812-817. DOI: 10.3760/cma.j.cn511434-20210513-00252.
- 84. Colantonio MA, Nwafor DC, Jaiswal S, et al. Myelin oligodendrocyte glycoprotein antibody-associated optic neuritis and myelitis in COVID-19: a case report and a review of the literature[J]. Egypt J Neurol Psychiatr Neurosurg, 2022, 58(1): 62. DOI: 10.1186/s41983-022-00496-4.
-
Previous Article
新型冠状病毒感染相关双眼急性黄斑神经视网膜病变1例 -
Next Article
Research progress of gut microbiota in diabetic retinopathy