1. |
Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. DOI: 10.1016/S0140-6736(18)31550-2.
|
2. |
Heesterbeek TJ, Lorés-Motta L, Hoyng CB, et al. Risk factors for progression of age-related macular degeneration[J]. Ophthalmic Physiol Opt, 2020, 40(2): 140-170. DOI: 10.1111/opo.12675.
|
3. |
Blasiak J. Senescence in the pathogenesis of age-related macular degeneration[J]. Cell Mol Life Sci, 2020, 77(5): 789-805. DOI: 10.1007/s00018-019-03420-x.
|
4. |
Sreekumar PG, Hinton DR, Kannan R. The emerging role of senescence in ocular disease[J/OL]. Oxid Med Cell Longev, 2020, 2020: 2583601[2020-03-09]. https://pubmed.ncbi.nlm.nih.gov/32215170/. DOI: 10.1155/2020/2583601.
|
5. |
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains[J]. Exp Cell Res, 1961, 25: 585-621. DOI: 10.1016/0014-4827(61)90192-6.
|
6. |
Von Kobbe C. Cellular senescence: a view throughout organismal life[J]. Cell Mol Life Sci, 2018, 75(19): 3553-3367. DOI: 10.1007/s00018-018-2879-8.
|
7. |
Rodier F, MuÑoz DP, Teachenor R, et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion[J]. J Cell Sci, 2011, 124(Pt 1): 68-81. DOI: 10.1242/jcs.071340.
|
8. |
Kozhevnikova OS, Korbolina EE, Ershov NI, et al. Rat retinal transcriptome: effects of aging and AMD-like retinopathy[J]. Cell Cycle, 2013, 12(11): 1745-1761. DOI: 10.4161/cc.24825.
|
9. |
Sikora E, Arendt T, Bennett M, et al. Impact of cellular senescence signature on ageing research[J]. Ageing Res Rev, 2011, 10(1): 146-152. DOI: 10.1016/j.arr.2010.10.002.
|
10. |
López-Luppo M, Catita J, Ramos D, et al. Cellular senescence is associated with human retinal microaneurysm formation during aging[J]. Invest Ophthalmol Vis Sci, 2017, 58(7): 2832-2842. DOI: 10.1167/iovs.16-20312.
|
11. |
Cabrera AP, Bhaskaran A, Xu J, et al. Senescence increases choroidal endothelial stiffness and susceptibility to complement injury: implications for choriocapillaris loss in AMD[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 5910-5918. DOI: 10.1167/iovs.16-19727.
|
12. |
Copland DA, Theodoropoulou S, Liu J, et al. A perspective of AMD through the eyes of immunology[J]. Invest Ophthalmol Vis Sci, 2018, 59(4): 83-92. DOI: 10.1167/iovs.18-23893.
|
13. |
Lazarov T, Juarez-Carreño S, Cox N, et al. Physiology and diseases of tissue-resident macrophages[J]. Nature, 2023, 618(7966): 698-707. DOI: 10.1038/s41586-023-06002-x.
|
14. |
Xu Y, Balasubramaniam B, Copland DA, et al. Activated adult microglia influence retinal progenitor cell proliferation and differentiation toward recoverin-expressing neuron-like cells in a co-culture model[J]. Graefe's Arch Clin Exp Ophthalmol, 2015, 253(7): 1085-1096. DOI: 10.1007/s00417-015-2961-y.
|
15. |
Ma W, Cojocaru R, Gotoh N, et al. Gene expression changes in aging retinal microglia: relationship to microglial support functions and regulation of activation[J]. Neurobiol Aging, 2013, 34(10): 2310-2321. DOI: 10.1016/j.neurobiolaging.2013.03.022.
|
16. |
Pereira BI, Devine OP, Vukmanovic-stejic M, et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8 T cell inhibition[J/OL]. Nat Commun, 2019, 10(1): 2387[2019-06-03]. https://pubmed.ncbi.nlm.nih.gov/31160572/. DOI: 10.1038/s41467-019-10335-5.
|
17. |
Lin JB, Moolani HV, Sene A, et al. Macrophage microRNA-150 promotes pathological angiogenesis as seen in age-related macular degeneration[J/OL]. JCI Insight, 2018, 3(7): e120157[2018-04-05]. https://pubmed.ncbi.nlm.nih.gov/29618664/. DOI: 10.1172/jci.insight.120157.
|
18. |
Roger L, Tomas F, Gire V. Mechanisms and regulation of cellular senescence[J/OL]. Int J Mol Sci, 2021, 22(23): 13173[2021-12-06]. https://pubmed.ncbi.nlm.nih.gov/34884978/. DOI: 10.3390/ijms222313173.
|
19. |
Lazzarini R, Nicolai M, Pirani V, et al. Effects of senescent secretory phenotype acquisition on human retinal pigment epithelial stem cells[J]. Aging (Albany NY), 2018, 10(11): 3173-3184. DOI: 10.18632/aging.101624.
|
20. |
Hussain AA, Lee Y, Marshall J. Understanding the complexity of the matrix metalloproteinase system and its relevance to age-related diseases: age-related macular degeneration and Alzheimer's disease[J/OL]. Prog Retin Eye Res, 2020, 74: 100775[2019-08-29]. https://pubmed.ncbi.nlm.nih.gov/31473329/. DOI: 10.1016/j.preteyeres.2019.100775.
|
21. |
Acosta JC, Banito A, Wuestefeld T, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence[J]. Nat Cell Biol, 2013, 15(8): 978-990. DOI: 10.1038/ncb2784.
|
22. |
Takasugi M. Emerging roles of extracellular vesicles in cellular senescence and aging[J/OL]. Aging Cell, 2018, 17(2): e12734[2018-02-21]. https://pubmed.ncbi.nlm.nih.gov/29392820/. DOI: 10.1111/acel.12734.
|
23. |
Wang AL, Lukas TJ, Yuan M, et al. Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration[J/OL]. PLoS One, 2009, 4(1): e4160[2009-01-08]. https://pubmed.ncbi.nlm.nih.gov/19129916/. DOI: 10.1371/journal.pone.0004160.
|
24. |
Hitomi K, Okada R, Loo TM, et al. DNA damage regulates senescence-associated extracellular vesicle release via the ceramide pathway to prevent excessive inflammatory responses[J/OL]. Int J Mol Sci, 2020, 21(10): 3720[2020-05-25]. https://pubmed.ncbi.nlm.nih.gov/32466233/. DOI: 10.3390/ijms21103720.
|
25. |
FafiÁn-labora JA, O'loghlen A. Classical and nonclassical intercellular communication in senescence and ageing[J]. Trends Cell Biol, 2020, 30(8): 628-639. DOI: 10.1016/j.tcb.2020.05.003.
|
26. |
FafiÁn-labora JA, O'loghlen A. NF-κB/IKK activation by small extracellular vesicles within the SASP[J/OL]. Aging Cell, 2021, 20(7): e13426[2021-06-29]. https://pubmed.ncbi.nlm.nih.gov/34187082/. DOI: 10.1111/acel.13426.
|
27. |
Marazita MC, Dugour A, Marquioni-ramella MD, et al. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: implications for age-related macular degeneration[J]. Redox Biol, 2016, 7: 78-87. DOI: 10.1016/j.redox.2015.11.011.
|
28. |
Han X, Zhang T, Zhang X, et al. AMPK alleviates oxidative stress-induced premature senescence via inhibition of NF-κB/STAT3 axis-mediated positive feedback loop[J/OL]. Mech Ageing Dev, 2020, 191: 111347[2020-08-31]. https://pubmed.ncbi.nlm.nih.gov/32882228/. DOI: 10.1016/j.mad.2020.111347.
|
29. |
Son SM, Shin HJ, Byun J, et al. Metformin facilitates amyloid-β generation by β- and γ-secretases via autophagy activation[J]. J Alzheimers Dis, 2016, 51(4): 1197-1208. DOI: 10.3233/JAD-151200.
|
30. |
Sun Y, Zheng Y, Wang C, et al. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells[J]. Cell Death Dis, 2018, 9(7): 753. DOI: 10.1038/s41419-018-0794-4.
|
31. |
Lin H, Xu H, Liang FQ, et al. Mitochondrial DNA damage and repair in RPE associated with aging and age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3521-3529. DOI: 10.1167/iovs.10-6163.
|
32. |
Hyttinen JMT, Błasiak J, Niittykoski M, et al. DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells-implications for age-related macular degeneration (AMD)[J]. Ageing Res Rev, 2017, 36: 64-77. DOI: 10.1016/j.arr.2017.03.006.
|
33. |
Kaarniranta K, Pawlowska E, Szczepanska J, et al. Role of mitochondrial DNA damage in ROS-mediated pathogenesis of age-related macular degeneration (AMD)[J/OL]. Int J Mol Sci, 2019, 20(10): 2374[2019-05-14]. https://pubmed.ncbi.nlm.nih.gov/31091656/. DOI: 10.3390/ijms20102374.
|
34. |
Barreau E, Brossas JY, Courtois Y, et al. Accumulation of mitochondrial DNA deletions in human retina during aging[J]. Invest Ophthalmol Vis Sci, 1996, 37(2): 384-391.
|
35. |
Karunadharma PP, Nordgaard CL, Olsen TW, et al. Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2010, 51(11): 5470-5479. DOI: 10.1167/iovs.10-5429.
|
36. |
Kenney MC, Atilano SR, Boyer D, et al. Characterization of retinal and blood mitochondrial DNA from age-related macular degeneration patients[J]. Invest Ophthalmol Vis Sci, 2010, 51(8): 4289-4297. DOI: 10.1167/iovs.09-4778.
|
37. |
Glück S, Guey B, Gulen M F, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence[J]. Nat Cell Biol, 2017, 19(9): 1061-1070. DOI: 10.1038/ncb3586.
|
38. |
Wu Y, Wei Q, Yu J. The cGAS/STING pathway: a sensor of senescence-associated DNA damage and trigger of inflammation in early age-related macular degeneration[J]. Clin Interv Aging, 2019, 14: 1277-1283. DOI: 10.2147/CIA.S200637.
|
39. |
Zou M, Ke Q, Nie Q, et al. Inhibition of cGAS-STING by JQ1 alleviates oxidative stress-induced retina inflammation and degeneration[J]. Cell Death Differ, 2022, 29(9): 1816-1833. DOI: 10.1038/s41418-022-00967-4.
|
40. |
Gong L, Liu F, Xiong Z, et al. Heterochromatin protects retinal pigment epithelium cells from oxidative damage by silencing p53 target genes[J/OL]. Proc Natl Acad Sci USA, 2018, 115(17): E3987-3995[2018-04-24]. https://pubmed.ncbi.nlm.nih.gov/29622681/. DOI: 10.1073/pnas.1715237115.
|
41. |
Zou M, Gong L, Ke Q, et al. Heterochromatin inhibits cGAS and STING during oxidative stress-induced retinal pigment epithelium and retina degeneration[J]. Free Radic Biol Med, 2022, 178: 147-160. DOI: 10.1016/j.freeradbiomed.2021.11.040.
|
42. |
König J, Ott C, Hugo M, et al. Mitochondrial contribution to lipofuscin formation[J]. Redox Biol, 2017, 11: 673-681. DOI: 10.1016/j.redox.2017.01.017.
|
43. |
Alaimo A, Liñares GG, Bujjamer JM, et al. Toxicity of blue led light and A2E is associated to mitochondrial dynamics impairment in ARPE-19 cells: implications for age-related macular degeneration[J]. Arch Toxicol, 2019, 93(5): 1401-1415. DOI: 10.1007/s00204-019-02409-6.
|
44. |
Wang J, Feng Y, Han P, et al. Photosensitization of A2E triggers telomere dysfunction and accelerates retinal pigment epithelium senescence[J]. Cell Death Dis, 2018, 9(2): 178. DOI: 10.1038/s41419-017-0200-7.
|
45. |
Cao L, Wang H, Wang F. Amyloid-β-induced matrix metalloproteinase-9 secretion is associated with retinal pigment epithelial barrier disruption[J]. Int J Mol Med, 2013, 31(5): 1105-1112. DOI: 10.3892/ijmm.2013.1310.
|
46. |
Liu C, Cao L, Yang S, et al. Subretinal injection of amyloid-β peptide accelerates RPE cell senescence and retinal degeneration[J]. Int J Mol Med, 2015, 35(1): 169-176. DOI: 10.3892/ijmm.2014.1993.
|
47. |
Wu J, Gao G, Shi F, et al. Activated microglia-induced neuroinflammatory cytokines lead to photoreceptor apoptosis in Aβ-injected mice[J]. J Mol Med (Berl), 2021, 99(5): 713-728. DOI: 10.1007/s00109-021-02046-6.
|
48. |
Nilsson P, Saido TC. Dual roles for autophagy: degradation and secretion of Alzheimer's disease Aβ peptide[J]. Bioessays, 2014, 36(6): 570-578. DOI: 10.1002/bies.201400002.
|
49. |
Feng L, Liao X, Zhang Y, et al. Protective effects on age-related macular degeneration by activated autophagy induced by amyloid-β in retinal pigment epithelial cells[J]. Discov Med, 2019, 27(148): 153-160.
|
50. |
Mullins RF, Schoo DP, Sohn EH, et al. The membrane attack complex in aging human choriocapillaris: relationship to macular degeneration and choroidal thinning[J]. Am J Pathol, 2014, 184(11): 3142-3153. DOI: 10.1016/j.ajpath.2014.07.017.
|
51. |
Kirkland JL, Tchkonia T, Zhu Y, et al. The clinical potential of senolytic drugs[J]. J Am Geriatr Soc, 2017, 65(10): 2297-2301. DOI: 10.1111/jgs.14969.
|
52. |
Crespo-Garcia S, Tsuruda PR, Dejda A, et al. Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition[J]. Cell Metab, 2021, 33(4): 818-832. DOI: 10.1016/j.cmet.2021.01.011.
|
53. |
Hassan JW, Bhatwadekar AD. Senolytics in the treatment of diabetic retinopathy[J/OL]. Front Pharmacol, 2022, 13: 896907[2022-08-26]. https://pubmed.ncbi.nlm.nih.gov/36091769/. DOI: 10.3389/fphar.2022.896907.
|
54. |
Knoppert SN, Valentijn FA, Nguyen TQ, et al. Cellular senescence and the kidney: potential therapeutic targets and tools[J]. Front Pharmacol, 2019, 10: 770. DOI: 10.3389/fphar.2019.00770.
|
55. |
Fuhrmann-Stroissnigg H, Ling YY, Zhao J, et al. Identification of HSP90 inhibitors as a novel class of senolytics[J]. Nat Commun, 2017, 8(1): 422. DOI: 10.1038/s41467-017-00314-z.
|
56. |
Short S, Fielder E, Miwa S, et al. Senolytics and senostatics as adjuvant tumour therapy[J]. EBioMedicine, 2019, 41: 683-692. DOI: 10.1016/j.ebiom.2019.01.056.
|
57. |
Xu J, Zhu D, He S, et al. Transcriptional regulation of bone morphogenetic protein 4 by tumor necrosis factor and its relationship with age-related macular degeneration[J]. FASEB J, 2011, 25(7): 2221-2133. DOI: 10.1096/fj.10-178350.
|
58. |
Zhu D, Wu J, Spee C, et al. BMP4 mediates oxidative stress-induced retinal pigment epithelial cell senescence and is overexpressed in age-related macular degeneration[J]. J Biol Chem, 2009, 284(14): 9529-9539. DOI: 10.1074/jbc.M809393200.
|
59. |
Salovska B, Kondelova A, Pimkova K, et al. Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape[J/OL]. Redox Biol, 2022, 49: 102212[2021-12-11]. https://pubmed.ncbi.nlm.nih.gov/34923300/. DOI: 10.1016/j.redox.2021.102212.
|
60. |
Lee C, Zeng J, Drew BG, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance[J]. Cell Metab, 2015, 21(3): 443-454. DOI: 10.1016/j.cmet.2015.02.009.
|
61. |
Minasyan L, Sreekumar PG, Hinton DR, et al. Protective mechanisms of the mitochondrial-derived peptide humanin in oxidative and endoplasmic reticulum stress in RPE cells[J/OL]. Oxid Med Cell Longev, 2017, 2017: 1675230[2017-07-26]. https://pubmed.ncbi.nlm.nih.gov/28814984/. DOI: 10.1155/2017/1675230.
|
62. |
Solanki A, Smalling R, Parola AH, et al. Humanin nanoparticles for reducing pathological factors characteristic of age-related macular degeneration[J]. Curr Drug Deliv, 2019, 16(3): 226-232. DOI: 10.2174/1567201815666181031163111.
|
63. |
Jun B, Mukherjee PK, Asatryan A, et al. Elovanoids are novel cell-specific lipid mediators necessary for neuroprotective signaling for photoreceptor cell integrity[J/OL]. Sci Rep, 2017, 7(1): 5279[2017-07-13]. https://pubmed.ncbi.nlm.nih.gov/28706274/. DOI: 10.1038/s41598-017-05433-7.
|
64. |
Do KV, Kautzmann MI, Jun B, et al. Elovanoids counteract oligomeric β-amyloid-induced gene expression and protect photoreceptors[J]. Proc Natl Acad Sci USA, 2019, 116(48): 24317-24325. DOI: 10.1073/pnas.1912959116.
|