1. |
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. DOI: 10.1016/j.ophtha.2021.04.027.
|
2. |
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119[2021-12-06]. https://pubmed.ncbi.nlm.nih.gov/34879977/. DOI: 10.1016/j.diabres.2021.109119.
|
3. |
中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2022年)[J]. 中华眼底病杂志, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.Fundus Pathology Group, Ophthalmology Branch, Chinese Medical Association, Ophthalmology Branch, Chinese Medical Doctor Association. Evidence-based guidelines for diagnosis and treatment of diabetic retinopathy in China (2022)[J]. Chin J Ocul Fundus Dis, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.
|
4. |
Kugler EC, Greenwood J, MacDonald RB. The "neuro-glial-vascular" unit: the role of glia in neurovascular unit formation and dysfunction[J/OL]. Front Cell Dev Biol, 2021, 9: 732820[2021-09-27]. https://pubmed.ncbi.nlm.nih.gov/34646826/. DOI: 10.3389/fcell.2021.732820.
|
5. |
惠延年. 神经血管单元与糖尿病视网膜病变[J]. 国际眼科杂志, 2023, 23(3): 353-355. DOI: 10.3980/j.issn.1672-5123.2023.3.01.Hui YN. Neurovascular unit and diabetic retinopathy[J]. Int Eye Sci, 2023, 23(3): 353-355. DOI: 10.3980/j.issn.1672-5123.2023.3.01.
|
6. |
李宝花, 郭超红, 郭承伟. 基于视网膜神经血管单元损伤及其耦联失衡防治糖尿病视网膜病变的研究进展[J]. 国际眼科杂志, 2022, 22(8): 1309-1312. DOI: 10.3980/j.issn.1672-5123.2022.8.14.Li BH, Guo CH, Guo CW. Research progress in prevention and treatment of diabetes retinopathy based on retinal neurovascular unit damage and its coupling imbalance[J]. Int Eye Sci, 2022, 22(8): 1309-1312. DOI: 10.3980/j.issn.1672-5123.2022.8.14.
|
7. |
马雪菲, 匡洪宇. 从神经血管单元角度认识糖尿病视网膜病变[J]. 中华糖尿病杂志, 2019, 11(10): 641-644. DOI: 10.3760/cma.j.issn.1674-5809.2019.10.001.Ma XF, Kuang HY. Understanding diabetes retinopathy from the perspective of neurovascular unit[J]. Chin J of Diabetes Mellitus, 2019, 11(10): 641-644. DOI: 10.3760/cma.j.issn.1674-5809.2019.10.001.
|
8. |
Mathew B, Chennakesavalu M, Sharma M, et al. Autophagy and post-ischemic conditioning in retinal ischemia[J]. Autophagy, 2021, 17(6): 1479-1499. DOI: 10.1080/15548627.2020.1767371.
|
9. |
Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases[J/OL]. EMBO J, 2021, 40(19): e108863[2021-08-30]. https://pubmed.ncbi.nlm.nih.gov/34459017/. DOI: 10.15252/embj.2021108863.
|
10. |
Rossino MG, Dal Monte M, Casini G. Relationships between neurodegeneration and vascular damage in diabetic retinopathy[J/OL]. Front Neuro sci, 2019, 13: 1172[2019-11-08]. https://pubmed.ncbi.nlm.nih.gov/31787868/. DOI: 10.3389/fnins.2019.01172.
|
11. |
Yang S, Zhang J, Chen L. The cells involved in the pathological process of diabetic retinopathy[J/OL]. Biomed Pharmacother, 2020, 132: 110818[2020-10-11]. https://pubmed.ncbi.nlm.nih.gov/33053509/. DOI: 10.1016/j.biopha.2020.110818.
|
12. |
Fu D, Yu JY, Yang S, et al. Survival or death: a dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy[J]. Diabetologia, 2016, 59(10): 2251-2261. DOI: 10.1007/s00125-016-4058-5.
|
13. |
Rosa MD, Distefano G, Gagliano C, et al. Autophagy in diabetic retinopathy[J]. Curr Neuropharmacol, 2016, 14(8): 810-825. DOI: 10.2174/1570159x14666160321122900.
|
14. |
Shu F, Xiao H, Li QN, et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 32. DOI: 10.1038/s41392-022-01300-8.
|
15. |
Chang KC, Liu PF, Chang CH, et al. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases[J]. Cell Bio sci, 2022, 12(1): 1. DOI: 10.1186/s13578-021-00736-9.
|
16. |
Luo Z, Xu X, Sho T, et al. ROS-induced autophagy regulates porcine trophectoderm cell apoptosis, proliferation, and differentiation[J]. Am J Physiol Cell Physiol, 2019, 316(2): 198-209. DOI: 10.1152/ajpcell.00256.2018.
|
17. |
Song S, Tan J, Miao Y, et al. Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress[J]. J Cell Physiol, 2017, 232(11): 2977-2984. DOI: 10.1002/jcp.25785.
|
18. |
Zhao X, Su L, He X, et al. Long noncoding RNA CA7-4 promotes autophagy and apoptosis via sponging MIR877-3P and MIR5680 in high glucose-induced vascular endothelial cells[J]. Autophagy, 2020, 16(1): 70-85. DOI: 10.1080/15548627.2019.1598750.
|
19. |
Denton D, Kumar S. Autophagy-dependent cell death[J/OL]. Cell Death Differ, 2019, 26(4): 605-616. DOI: 10.1038/s41418-018-0252-y.
|
20. |
李虹蓉, 汪浩. 糖尿病视网膜神经变性的研究进展[J]. 中华眼底病杂志, 2020, 36(6): 479-482. DOI: 10.3760/cma.j.cn511434-20190702-00208.Li HR, Wang H. Research progress of diabetic retinal neurodegeneration[J]. Chin J Ocul Fundus Dis, 2020, 36(6): 479-482. DOI: 10.3760/cma.j.cn511434-20190702-00208.
|
21. |
Wong YC, Holzbaur EL. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation[J/OL]. Proc Natl Acad Sci USA, 2014, 111(42): E4439-4448[2014-10-07]. https://pubmed.ncbi.nlm.nih.gov/25294927/. DOI: 10.1073/pnas.1405752111.
|
22. |
Lin WJ, Kuang HY. Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells[J]. Autophagy, 2014, 10(10): 1692-1701. DOI: 10.4161/auto.36076.
|
23. |
马雪菲, 林震宇, 林文简, 等. 利拉鲁肽对高糖诱导的视网膜神经节细胞损伤的保护作用及机制[J]. 中华糖尿病杂志, 2018, 10(5): 354-359. DOI: 10.3760/cma.j.issn.1674-5809.2018.05.010.Ma XF, Lin ZY, Lin WJ, et al. Protective effects of liraglutide on the injury of retinal ganglion cells induced by hyperglycemia[J]. Chin J of Diabetes Mellitus, 2018, 10(5): 354-359. DOI: 10.3760/cma.j.issn.1674-5809.2018.05.010.
|
24. |
王立, 颜世传, 牛兰俊, 等. 高糖对体外培养视网膜Müller细胞自噬及凋亡的影响[J]. 中华眼视光学与视觉科学杂志, 2022, 24(1): 17-26. DOI: 10.3760/cma.j.cn115909-20210408-00143.Wang L, Yan SZ, Niu LJ, et al. Autophagy and apoptosis of retinal müller cells induced by high Glucose[J]. Chin J Optom Ophthalmol Vis Sci, 2022, 24(1): 17-26. DOI: 10.3760/cma.j.cn115909-20210408-00143.
|
25. |
Cai X, Li J, Wang M, et al. GLP-1 treatment improves diabetic retinopathy by alleviating autophagy through GLP-1R-ERK1/2-HDAC6 signaling pathway[J]. Int J Med Sci, 2017, 14(12): 1203-1212. DOI: 10.7150/ijms.20962.
|
26. |
Sorice M. Crosstalk of autophagy and apoptosis[J/OL]. Cells, 2022, 11(9): 1479[2022-04-28]. https://pubmed.ncbi.nlm.nih.gov/35563785/. DOI: 10.3390/cells11091479.
|
27. |
Qin M, Xie Z, Cao T, et al. Autophagy in rat müller glial cells is modulated by the Sirtuin 4/AMPK/mTOR pathway and induces apoptosis under oxidative stress[J/OL]. Cells, 2022, 11(17): 2645[2022-08-25]. https://pubmed.ncbi.nlm.nih.gov/36078054/. DOI: 10.3390/cells11172645.
|
28. |
Mecchia A, Palumbo C, De Luca A, et al. High glucose induces an early and transient cytoprotective autophagy in retinal müller cells[J]. Endocrine, 2022, 77(2): 221-230. DOI: 10.1007/s12020-022-03079-8.
|
29. |
Dehdashtian E, Mehrzadi S, Yousefi B, et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress[J]. Life Sci, 2018, 193: 20-33. DOI: 10.1016/j.lfs.2017.12.001.
|
30. |
Adornetto A, Gesualdo C, Laganà ML, et al. Autophagy: a novel pharmacological target in diabetic retinopathy[J/OL]. Front Pharmacol, 2021, 12: 695267[2021-06-21]. https://pubmed.ncbi.nlm.nih.gov/34234681/. DOI: 10.3389/fphar.2021.695267.
|
31. |
Gong Q, Wang H, Yu P, et al. Protective or harmful: the dual roles of autophagy in diabetic retinopathy[J/OL]. Front Med (Lausanne), 2021, 8: 644121[2021-05-25]. https://pubmed.ncbi.nlm.nih.gov/33842506/. DOI: 10.3389/fmed.2021.644121.
|
32. |
Zafar S, Sachdeva M, Frankfort BJ, et al. Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies[J]. Curr Diab Rep, 2019, 19(4): 17. DOI: 10.1007/s11892-019-1134-5.
|
33. |
Kitaoka Y, Munemasa Y, Kojima K, et al. Axonal protection by Nmnat3 overexpression with involvement of autophagy in optic nerve degeneration[J/OL]. Cell Death Dis, 2013, 4(10): e860[2013-10-17]. https://pubmed.ncbi.nlm.nih.gov/24136224/. DOI: 10.1038/cddis.2013.391.
|
34. |
Ren X, Lv J, Wang N, et al. Thioredoxin upregulation delays diabetes-induced photoreceptor cell degeneration via AMPK-mediated autophagy and exosome secretion[J/OL]. Diabetes Res Clin Pract, 2022, 185: 109788[2022-02-17]. https://pubmed.ncbi.nlm.nih.gov/35182712/. DOI: 10.1016/j.diabres.2022.109788.
|
35. |
Zhang Y, Li T, Cai X, et al. Sirt5-mediated desuccinylation of OPTN protects retinal ganglion cells from autophagic flux blockade in diabetic retinopath[J]. Cell Death Discov, 2022, 8(1): 63. DOI: 10.1038/s41420-022-00861-5.
|
36. |
Ilaria P, Elena N, Luca DS, et al. Involvement of autophagic pathway in the progression of retinal degeneration in a mouse model of diabetes[J]. Front Cell Neurosci, 2016, 10: 42. DOI: 10.3389/fncel.2016.00042.
|
37. |
苏杰, 杨馥宇, 李猛, 等. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34. DOI: 10.6040/j.issn.1673-3770.0.2021.125.Su J, Yang FY, Li M, et al. GLP-1 protected the diabetic retinopathy through induction of autophagy in rats[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 30-34. DOI: 10.6040/j.issn.1673-3770.0.2021.125.
|
38. |
Madrakhimov SB, Yang JY, Kim JH, et al. mTOR-dependent dysregulation of autophagy contributes to the retinal ganglion cell loss in streptozotocin-induced diabetic retinopathy[J/OL]. Cell Commun Signal, 2021, 19(1): 29[2021-02-26]. https://pubmed.ncbi.nlm.nih.gov/33637094/. DOI: 10.1186/s12964-020-00698-4.
|
39. |
欧阳正隆, 余韵, 胡玉新, 等. 自噬在早期糖尿病大鼠视网膜神经病变中的作用[J]. 广东医学, 2017, 38(16): 2444-2449. DOI: 10.13820/j.cnki.gdyx.2017.16.004.Ouyang ZL, Yu Y, Hu YX, et al. The role of autophagy in retinal neuropathy in early diabetes rats[J]. Guangdong Medical Journal, 2017, 38(16): 2444-2449. DOI: 10.13820/j.cnki.gdyx.2017.16.004.
|
40. |
Park HL, Kim JH, Park CK. Different contributions of autophagy to retinal ganglion cell death in the diabetic and glaucomatous retinas[J/OL]. Sci Rep, 2018, 8(1): 13321[2018-09-06]. https://pubmed.ncbi.nlm.nih.gov/30190527/. DOI: 10.1038/s41598-018-30165-7.
|
41. |
Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration[J]. Int J Mol Sci, 2018, 19(1): 110. DOI: 10.3390/ijms19010110.
|
42. |
Lopes De Faria JM, Duarte DA, Montemurro C, et al. Defective autophagy in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2016, 57(10): 4356-4366. DOI: 10.1167/iovs.16-19197.
|
43. |
Zhou P, Xie W, Meng X, et al. Notoginsenoside R1 ameliorates diabetic retinopathy through PINK1-dependent activation of mitophagy[J]. Cells, 2019, 8(3): 213. DOI: 10.3390/cells8030213.
|
44. |
Luo Y, Dong X, Lu S, et al. Gypenoside ⅩⅦ alleviates early diabetic retinopathy by regulating müller cell apoptosis and autophagy in db/db mice[J/OL]. Eur J Pharmacol, 2021, 895: 173893[2021-03-15]. https://pubmed.ncbi.nlm.nih.gov/33493483/. DOI: 10.1016/j.ejphar.2021.173893.
|
45. |
Chen H, Ji Y, Yan X, et al. Berberine attenuates apoptosis in rat retinal müller cells stimulated with high glucose via enhancing autophagy and the AMPK/mTOR signaling[J]. Biomed Pharmacother, 2018, 108: 1201-1207. DOI: 10.1016/j.biopha.2018.09.140.
|
46. |
Wang Y, Liu X, Zhu L, et al. PG545 alleviates diabetic retinopathy by promoting retinal müller cell autophagy to inhibit the inflammatory response[J]. Biochem Biophys Res Commun, 2020, 531(4): 452-458. DOI: 10.1016/j.bbrc.2020.07.134.
|
47. |
He Y, She H, Zhang T, et al. p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1[J]. J Cell Biol, 2018, 217(1): 315-328. DOI: 10.1083/jcb.201701049.
|
48. |
Cui Y, Yang M, Wang Y, et al. Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway[J/OL]. FASEB J, 2021, 35(4): e21485[2021-04-01]. https://pubmed.ncbi.nlm.nih.gov/33709562/. DOI: 10.1096/fj.202002247RR.
|
49. |
Subirada PV, Paz MC, Ridano ME, et al. A journey into the retina: müller glia commanding survival and death[J]. Eur J Neurosci, 2018, 47(12): 1429-1443. DOI: 10.1111/ejn.13965.
|
50. |
Ao H, Li H, Zhao X, et al. TXNIP positively regulates the autophagy and apoptosis in the rat müller cell of diabetic retinopathy[J/OL]. Life Sci, 2021, 267: 118988[2021-02-15]. https://pubmed.ncbi.nlm.nih.gov/33412212/. DOI: 10.1016/j.lfs.2020.118988.
|
51. |
Zhu L, Zang J, Liu B, et al. Oxidative stress-induced RAC autophagy can improve the HUVEC functions by releasing exosomes[J]. J Cell Physiol, 2020, 235(10): 7392-7409. DOI: 10.1002/jcp.29641.
|
52. |
Rezabakhsh A, Ahmadi M, Khaksar M, et al. Rapamycin inhibits oxidative/nitrosative stress and enhances angiogenesis in high glucose-treated human umbilical vein endothelial cells: role of autophagy[J]. Biomed Pharmacother, 2017, 93: 885-894. DOI: 10.1016/j.biopha.2017.07.044.
|
53. |
Chao CL, Chuang CP, Cheng YF, et al. The protective role of autophagy in matrix metalloproteinase-mediated cell transmigration and cell death in high-glucose-treated endothelial cells[J]. Inflammation, 2016, 39(2): 830-838. DOI: 10.1007/s10753-016-0313-7.
|
54. |
Durham JT, Dulmovits BM, Cronk SM, et al. Pericyte chemomechanics and the angiogenic switch: insights into the pathogenesis of proliferative diabetic retinopathy?[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3441-3459. DOI: 10.1167/iovs.14-13945.
|
55. |
Fu D, Wu M, Zhang J, et al. Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy[J]. Diabetologia, 2012, 55(11): 3128-3140. DOI: 10.1007/s00125-012-2692-0.
|
56. |
Niu C, Chen Z, Kim KT, et al. Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway[J]. Autophagy, 2019, 15(5): 843-870. DOI: 10.1080/15548627.2019.1569913.
|
57. |
Yang Q, Li S, Zhou Z, et al. Trimetazidine mitigates high glucose-induced retinal endothelial dysfunction by inhibiting PI3K/Akt/mTOR pathway-mediated autophagy[J]. Bioengineered, 2022, 13(3): 7515-7527. DOI: 10.1080/21655979.2022.2048993.
|
58. |
Zou J, Fei Q, Xiao H, et al. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy[J]. J Cell Physiol, 2019, 234(10): 17690-17703. DOI: 10.1002/jcp.28395.
|
59. |
Du JH, Li X, Li R, et al. Role of autophagy in angiogenesis induced by a high-glucose condition in RF/6A cells[J]. Ophthalmologica, 2017, 237(2): 85-95. DOI: 10.1159/000455270.
|
60. |
冯路迦, 张学东. 自噬与HMGB1在糖尿病视网膜微血管病变和神经退行性变中的研究进展[J]. 眼科新进展, 2020, 40(4): 392-395. DOI: 10.13389/j.cnki.rao.2020.0091.Feng LJ, Zhang XD. Research advances on autophagy and HMGB1 in retinal microangiopathy and neurodegeneration of patient with diabetic retinopathy[J]. Rec Adv Ophthalmol, 2020, 40(4): 392-395. DOI: 10.13389/j.cnki.rao.2020.0091.
|