1. |
Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. DOI: 10.1016/j.ophtha.2016.01.006.
|
2. |
Flitcroft DI, He M, Jonas JB, et al. IMI-defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): 20-30. DOI: 10.1167/iovs.18-25957.
|
3. |
Joint World Health Organization-Brien Holden Vision Institute Global Scientific Meeting on Myopia. The impact of myopia and high myopia[EB/OL]. (2013-03-16)[2023-07-04]. https://www.researchgate.net/publication/318216691.
|
4. |
Cumberland PM, Bountziouka V, Rahi JS. Impact of varying the definition of myopia on estimates of prevalence and associations with risk factors: time for an approach that serves research, practice and policy[J]. Br J Ophthalmol, 2018, 102(10): 1407-1412. DOI: 10.1136/bjophthalmol-2017-311557.
|
5. |
Ohno-Matsui K, Wu PC, Yamashiro K, et al. IMI pathologic myopia[J]. Invest Ophthalmol Vis Sci, 2021, 62(5): 5. DOI: 10.1167/iovs.62.5.5.
|
6. |
Ohno-Matsui K, Lai TY, Lai CC, et al. Updates of pathologic myopia[J]. Prog Retin Eye Res, 2016, 52: 156-187. DOI: 10.1016/j.preteyeres.2015.12.001.
|
7. |
Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic classification and grading system for myopic maculopathy[J]. Am J Ophthalmol, 2015, 159(5): 877-883. DOI: 10.1016/j.ajo.2015.01.022.
|
8. |
Moriyama M, Ohno-Matsui K, Hayashi K, et al. Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging[J]. Ophthalmology, 2011, 118(8): 1626-1637. DOI: 10.1016/j.ophtha.2011.01.018.
|
9. |
Wang NK, Wu YM, Wang JP, et al. Clinical characteristics of posterior staphylomas in myopic eyes with axial length shorter than 26.5 millimeters[J]. Am J Ophthalmol, 2016, 162: 180-190. DOI: 10.1016/j.ajo.2015.11.016.
|
10. |
Zhang C, Zhao J, Zhu Z, et al. Applications of artificial intelligence in myopia: current and future directions[J/OL]. Front Med (Lausanne), 2022, 9: 840498[2022-03-11]. https://pubmed.ncbi.nlm.nih.gov/35360739/. DOI: 10.3389/fmed.2022.840498.
|
11. |
Du R, Ohno-Matsui K. Novel uses and challenges of artificial intelligence in diagnosing and managing eyes with high myopia and pathologic myopia[J/OL]. Diagnostics (Basel), 2022, 12(5): 1210[2022-05-12]. https://pubmed.ncbi.nlm.nih.gov/35626365/. DOI: 10.3390/diagnostics12051210.
|
12. |
Shao L, Zhang QL, Long TF, et al. Quantitative assessment of fundus tessellated density and associated factors in fundus images using artificial intelligence[J]. Transl Vis Sci Technol, 2021, 10(9): 23. DOI: 10.1167/tvst.10.9.23.
|
13. |
Song AP, Wu XY, Wang JR, et al. Measurement of retinal thickness in macular region of high myopic eyes using spectral domain OCT[J]. Int J Ophthalmol, 2014, 7(1): 122-127. DOI: 10.3980/j.issn.2222-3959.2014.01.23.
|
14. |
Su L, Ji YS, Tong N, et al. Quantitative assessment of the retinal microvasculature and choriocapillaris in myopic patients using swept-source optical coherence tomography angiography[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(6): 1173-1180. DOI: 10.1007/s00417-020-04639-2.
|
15. |
陈卓, 高建华, 刘康. 国际近视研究院白皮书[J]. 中华实验眼科杂志, 2019, 37(12): 1004-1023. DOI: 10.3760/cma.j.issn.2095-0160.2019.12.014.Chen Z, Gao JH, Liu K. International myopia institute white papers[J]. Chin J Exp Ophthalmol, 2019, 37(12): 1004-1023. DOI: 10.3760/cma.j.issn.2095-0160.2019.12.014.
|
16. |
国家卫生健康委员会. 近视防治指南[J]. 中国眼镜科技杂志, 2018, 7(13): 98-102.National Health Commission. Myopia prevention guide[J]. China Glasses Science-Technology, 2018, 7(13): 98-102.
|
17. |
近视管理白皮书(2019)国家卫生健康委员会. 近视防治指南[EB/OL]. (2020-11-05)[2023-07-04]. http://www.nhc.gov.cn/yzygj/s7652/201806/41974899de984947b8faef92a15e9172.shtml.
|
18. |
中华预防医学会公共卫生眼科分会, 北京预防医学会公共卫生眼科学专委会. 关于加强儿童青少年近视防控用眼行为干预的倡议及实施方法共识(2023)[J]. 中华实验眼科杂志, 2023, 41(4): 297-302. DOI: 10.3760/cma.j.cn115989-20230102-00002.Chinese Preventive Medicine Association Public Health Ophthalmology Branch, Beijing Preventive Medicine Association Public health Ophthalmology Special Committee. Consensus on enhancing eye-use behavior interventions for myopia prevention and control of children and adolescents (2023): an extraordinary prescription for eye-use behavior intervention[J]. Chin J Exp Ophthalmol, 2023, 41(4): 297-302. DOI: 10.3760/cma.j.cn115989-20230102-00002.
|
19. |
《低浓度硫酸阿托品防控近视进展眼用制剂制备的专家共识(2023)》专家组, 上海市眼镜行业协会, 上海市医学会视光学专科分会. 低浓度硫酸阿托品防控近视进展眼用制剂制备的专家共识(2023)[J]. 中华实验眼科杂志, 2023, 41(3): 201-205. DOI: 10.3760/cma.j.cn115989-20230120-00023.Expert Group of Expert Consensus on the Preparation of Ophthalmic Preparations for the Prevention and Control of Myopia Progression with Low Concentration Atropine Sulfate (2023) , Shanghai Eyeglasses Industry Association, Shanghai Medical Association Optometry Branch. Experts consensus on preparation of low-concentration atropine sulfate for myopia progression control (2023)[J]. Chin J Exp Ophthalmol, 2023, 41(3): 201-205. DOI: 10.3760/cma.j.cn115989-20230120-00023.
|
20. |
《重复低强度红光照射辅助治疗儿童青少年近视专家共识(2022)》专家组. 重复低强度红光照射辅助治疗儿童青少年近视专家共识(2022)[J]. 中华实验眼科杂志, 2022, 40(7): 599-603. DOI: 10.3760/cma.j.cn115989-20220616-00279.Expert Consensus on Repeated low-intensity red light irradiation for the Adjuvant Treatment of Myopia in Children and Adolescents (2022). Expert consensus on repeated low-level red-light as an alternative treatment for childhood myopia (2022)[J]. Chin J Exp Ophthalmol, 2022, 40(7): 599-603. DOI: 10.3760/cma.j.cn115989-20220616-00279.
|
21. |
中华中医药学会眼科分会. 中医药防控儿童青少年近视指南(社区医生与校医版)[J]. 中国中医眼科杂志, 2021, 31(7): 461-465. DOI: 10.13444/j.cnki.zgzyykzz.2021.07.001.Ophthalmology Branch, Chinese Society of Traditional Chinese Medicine. Guidelines on prevention and control of myopia in children and adolescents with traditional Chinese medicine (community doctor and school doctor edition)[J]. Chinese Journal of Chinese Ophthalmology, 2021, 31(7): 461-465. DOI: 10.13444/j.cnki.zgzyykzz.2021.07.001.
|
22. |
中华中医药学会眼科分会. 中医药防控儿童青少年近视指南(学生与家长版)[J]. 中国中医眼科杂志, 2021, 31(6): 385-389. DOI: 10.13444/j.cnki.zgzyykzz.2021.06.001.Ophthalmology Branch, Chinese Society of Traditional Chinese Medicine. Guidelines on prevention and control of myopia in children and adolescents with traditional Chinese medicine (students and parents edition)[J]. Chinese Journal of Chinese Ophthalmology, 2021, 31(7): 461-465. DOI: 10.13444/j.cnki.zgzyykzz.2021.07.001. DOI: 10.13444/j.cnki.zgzyykzz.2021.06.001.
|
23. |
Cai XB, Shen SR, Chen DF, et al. An overview of myopia genetics[J/OL]. Exp Eye Res, 2019, 188: 107778[2019-08-28]. https://pubmed.ncbi.nlm.nih.gov/31472110/. DOI: 10.1016/j.exer.2019.107778.
|
24. |
Tedja MS, Haarman AEG, Meester-Smoor MA, et al. IMI-myopia genetics report[J]. Invest Ophthalmol Vis Sci, 2019, 60(3): 89-105. DOI: 10.1167/iovs.18-25965.
|
25. |
Haarman AEG, Thiadens AAHJ, van Tienhoven M, et al. Whole exome sequencing of known eye genes reveals genetic causes for high myopia[J]. Hum Mol Genet, 2022, 31(19): 3290-3298. DOI: 10.1093/hmg/ddac113.
|
26. |
Flitcroft I, Ainsworth J, Chia A, et al. IMI-management and investigation of high myopia in infants and young children[J]. Invest Ophthalmol Vis Sci, 2023, 64(6): 3. DOI: 10.1167/iovs.64.6.3.
|
27. |
Wang M, Zhang F, Qian X, et al. Regional biomechanical properties of human sclera after cross-linking by riboflavin/ultraviolet A[J]. J Refract Surg, 2012, 28(10): 723-728. DOI: 10.3928/1081597X-20120921-08.
|
28. |
Jiang Y, Zhu Z, Tan X, et al. Effect of repeated low-level red-light therapy for myopia control in children: a multicenter randomized controlled trial[J]. Ophthalmology, 2022, 129(5): 509-519. DOI: 10.1016/j.ophtha.2021.11.023.
|
29. |
任晔, 严宏, 邢咏新. 红光对视觉发育的影响[J]. 国际眼科纵览, 2011, 35(2): 136-139. DOI: 10.3760/cma.j.issn.1673-5803.2011.02.015.Ren Y, Yan H, Xing YX. Effect of red light on visual development[J]. Int Rev Ophthalmol, 2011, 35(2): 136-139. DOI: 10.3760/cma.j.issn.1673-5803.2011.02.015.
|
30. |
Zhou L, Xing C, Qiang W, et al. Low-intensity, long-wavelength red light slows the progression of myopia in children: an Eastern China-based cohort[J]. Ophthalmic Physiol Opt, 2022, 42(2): 335-344. DOI: 10.1111/opo.12939.
|
31. |
Hung LF, Arumugam B, She Z, et al. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys[J]. Exp Eye Res, 2018, 176: 147-160. DOI: 10.1016/j.exer.2018.07.004.
|
32. |
Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J/OL]. Proc Natl Acad Sci USA, 2018, 115(30): E7091-7100[2018-07-24]. https://pubmed.ncbi.nlm.nih.gov/29987045/. DOI: 10.1073/pnas.1721443115.
|
33. |
Xiong R, Zhu Z, Jiang Y, et al. Sustained and rebound effect of repeated low-level red-light therapy on myopia control: a 2-year post-trial follow-up study[J]. Clin Exp Ophthalmol, 2022, 50(9): 1013-1024. DOI: 10.1111/ceo.14149.
|
34. |
Dong J, Zhu Z, Xu H, et al. Myopia control effect of repeated low-level red-light therapy in Chinese children: a randomized, double-blind, controlled clinical trial[J]. Ophthalmology, 2023, 130(2): 198-204. DOI: 10.1016/j.ophtha.2022.08.024.
|
35. |
Wang W, Jiang Y, Zhu Z, et al. Clinically significant axial shortening in myopic children after repeated low-level red light therapy: a retrospective multicenter analysis[J]. Ophthalmol Ther, 2023, 12(2): 999-1011. DOI: 10.1007/s40123-022-00644-2.
|
36. |
Golchin A, Farahany TZ. Biological products: cellular therapy and FDA approved products[J]. Stem Cell Rev Rep, 2019, 15(2): 166-175. DOI: 10.1007/s12015-018-9866-1.
|
37. |
Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9817): 713-720. DOI: 10.1016/S0140-6736(12)60028-2.
|
38. |
Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration[J]. N Engl J Med, 2017, 376(11): 1038-1046. DOI: 10.1056/NEJMoa1608368.
|
39. |
Zhang H, Su B, Jiao L, et al. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China[J]. Ann Transl Med, 2021, 9(3): 245. DOI: 10.21037/atm-20-4707.
|
40. |
Zhang Z, Wei Y, Jiang X, et al. Pars plana vitrectomy and wide internal limiting membrane peeling with perfluoroproprane tamponade for highly myopic foveoschisis-associated macular hole[J]. Retina, 2017, 37(2): 274-282. DOI: 10.1097/IAE.0000000000001146.
|
41. |
Fang Y, Yokoi T, Shimada N, et al. Development of macular atrophy after pars palna vitrectomy for myopic traction maculopathy and macular hole retinal detachment in pathologic myopia[J]. Retina, 2020, 40(10): 1881-1893. DOI: 10.1097/IAE.0000000000002709.
|
42. |
Ma Y, Li YP, Jin ZB. Stem cell-based therapy for myopic maculopathy: a new concept[J]. Journal of Translational Genetics and Genomics, 2022, 6: 179-203. DOI: 10.20517/jtgg.2021.48.
|
43. |
Jin ZB, Wu J, Huang XF, et al. Trio-based exome sequencing arrests de novo mutations in early-onset high myopia[J]. Proc Natl Acad Sci USA, 2017, 114(16): 4219-4224. DOI: 10.1073/pnas.1615970114.
|