1. |
Berger W, Kloeckener-Gruissem B, Neidhardt JThe molecular basis of human retinal and vitreoretinal diseases[J]. Prog Retin Eye Res2010295335375. DOI:10.1016/j.preteyeres. 2010.03.004. doi:10.1016/j.preteyeres.2010.03.004.
|
2. |
Ellingford JM, Barton S, Bhaskar S, et alWhole genome sequencing increases molecular diagnostic yield compared with current diagnostic testing for inherited retinal disease[J]. Ophthalmology2016123511431150. DOI:10.1016/j.ophtha.2016.01.009.
|
3. |
Zampaglione E, Kinde B, Place EM, et alCopy-number variation contributes 9% of pathogenicity in the inherited retinal degenerations[J]. Genet Med202022610791087. DOI:10.1038/s41436-020-0759-8.
|
4. |
Di Scipio M, Tavares E, Deshmukh S, et alPhenotype driven analysis of whole genome sequencing identifies deep intronic variants that cause retinal dystrophies by aberrant exonization[J]. Invest Ophthalmol Vis Sci2020611036. DOI:10.1167/iovs.61.10.36.
|
5. |
Weisschuh N, Buena-Atienza E, Wissinger B. Splicing mutations in inherited retinal diseases [J/OL]. Prog Retin Eye Res, 2021, 80: 100874[2020-06-15]. https://linkinghub.elsevier.com/retrieve/pii/S1350-9462(20)30046-X. DOI:10.1016/j.preteyeres.2020.100874.
|
6. |
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations[J/OL]. Prog Retin Eye Res, 2020, 79: 100861[2020-04-09]. https://linkinghub.elsevier.com/retrieve/pii/S1350-9462(20)30033-1. DOI:10.1016/j.preteyeres.2020.100861.
|
7. |
Tian L, Chen C, Song Y, et alPhenotype-based genetic analysis reveals missing heritability of ABCA4-related retinopathy: deep intronic variants and copy number variations[J]. Invest Ophthalmol Vis Sci20226365. DOI:10.1167/iovs.63.6.5.
|
8. |
Zhang X, Xie Y, Xu K, et alcomprehensive genetic analysis unraveled the missing heritability in a chinese cohort with Wolfram syndrome 1: clinical and genetic findings[J]. Invest Ophthalmol Vis Sci202263109. DOI:10.1167/iovs.63.10.9.
|
9. |
Richards S, Aziz N, Bale S, et alStandards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med2015175405424. DOI:10.1038/gim.2015.30.
|
10. |
Sangermano R, Garanto A, Khan M, et alDeep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides[J]. Genet Med201921817511760. DOI:10.1038/s41436-018-0414-9.
|
11. |
Khan M, Arno G, Fakin A, et alDetailed phenotyping and therapeutic strategies for intronic ABCA4 variants in Stargardt disease[J]. Mol Ther Nucleic Acids202021412427. DOI:10.1016/j.omtn.2020.06.007.
|
12. |
Parfitt DA, Lane A, Ramsden CM, et alIdentification and correction of mechanisms underlying inherited blindness in human iPSC-Derived optic cups[J]. Cell Stem Cell2016186769781. DOI:10.1016/j.stem.2016.03.021.
|
13. |
Xue K, MacLaren REAntisense oligonucleotide therapeutics in clinical trials for the treatment of inherited retinal diseases[J]. Expert Opin Investig Drugs2020291011631170. DOI:10.1080/13543784.2020.1804853.
|
14. |
Leroy BP, Birch DG, Duncan JL, et al. Leber congenital amaurosis due to CEP290 mutations-severe vision impairment with a high unmet medical need: a review[J]. Retina, 2021, 41(5): 898-907. DOI:10.1097/IAE.0000000000003133.
|
15. |
Russell SR, Drack AV, Cideciyan AV, et alIntravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial[J]. Nat Med202228510141021. DOI:10.1038/s41591-022-01755-w.
|
16. |
Eichler EEGenetic variation, comparative genomics, and the diagnosis of disease[J]. N Engl J Med201938116474. DOI: 10.1056/NEJMra1809315.
|
17. |
Maston GA, Evans SK, Green MRTranscriptional regulatory elements in the human genome[J]. Annu Rev Genomics Hum Genet200672959. DOI:10.1146/annurev.genom.7.080505.115623.
|
18. |
Rose AM, Shah AZ, Waseem NH, et alExpression of PRPF31 and TFPT: regulation in health and retinal disease[J]. Hum Mol Genet2012211841264137. DOI:10.1093/hmg/dds242.
|
19. |
Katagiri S, Iwasa M, Hayashi T, et alGenotype determination of the OPN1LW/OPN1MW genes: novel disease-causing mechanisms in Japanese patients with blue cone monochromacy[J]. Sci Rep20188111507. DOI:10.1038/s41598-018-29891-9.
|
20. |
Coppieters F, Todeschini AL, Fujimaki T, et alHidden genetic variation in LCA9-associated congenital blindness explained by 5'UTR mutations and copy-number variations of NMNAT1[J]. Hum Mutat2015361211881196. DOI:10.1002/humu.22899.
|
21. |
Radziwon A, Arno G, K Wheaton D, et alSingle-base substitutions in the CHM promoter as a cause of choroideremia[J]. Hum Mutat2017386704715. DOI:10.1002/humu.23212.
|