1. |
Flaxel CJ, Adelman RA, Bailey ST, et al. Posterior vitreous detachment, retinal breaks, and lattice degeneration preferred practice pattern®[J]. Ophthalmology, 2020, 127(1): 146-181. DOI: 10.1016/j.ophtha.2019.09.027.
|
2. |
Li Z, Guo C, Nie D, et al. A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images[J]. Ann Transl Med, 2019, 7(22): 618. DOI: 10.21037/atm.2019.11.28.
|
3. |
Lewis H. Peripheral retinal degenerations and the risk of retinal detachment[J]. Am J Ophthalmol, 2003, 136(1): 155-160. DOI: 10.1016/s0002-9394(03)00144-2.
|
4. |
Conart JB, Augustin S, Remen T, et al. Vitreous cytokine expression profiles in patients with retinal detachment[J]. J Fr Ophtalmol, 2021, 44(9): 1349-1357. DOI: 10.1016/j.jfo.2021.04.007.
|
5. |
Batsos G, Christodoulou E, Christou E, et al. Vitreous inflammatory and angiogenic factors on patients with proliferative diabetic retinopathy or diabetic macular edema: the role of Lipocalin2[J]. BMC Ophthalmol, 2022, 22(1): 496. DOI: 10.1186/s12886-022-02733-z.
|
6. |
Chen L, Zhang W, Xie P, et al. Comparisons of vitreal angiogenic, inflammatory, profibrotic cytokines, and chemokines profile between patients with epiretinal membrane and macular hole[J/OL]. J Ophthalmol, 2021, 2021: 9947250[2021-07-13]. https://pubmed.ncbi.nlm.nih.gov/34336263/. DOI: 10.1155/2021/9947250.
|
7. |
Prasad M, Xu J, Agranat JS, et al. Upregulation of neuroinflammatory protein biomarkers in acute rhegmatogenous retinal detachments[J]. Life (Basel), 2023, 13(1): 118. DOI: 10.3390/life13010118.
|
8. |
Öhman T, Gawriyski L, Miettinen S, et al. Molecular pathogenesis of rhegmatogenous retinal detachment[J]. Sci Rep, 2021, 11(1): 966. DOI: 10.1038/s41598-020-80005-w.
|
9. |
Rao RM, Yang L, Garcia-Cardena G, et al. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall[J]. Circ Res, 2007, 101(3): 234-247. DOI: 10.1161/CIRCRESAHA.107.151860b.
|
10. |
Manjunath V, Taha M, Fujimoto JG, et al. Posterior lattice degeneration characterized by spectral domain optical coherence tomography[J]. Retina, 2011, 31(3): 492-496. DOI: 10.1097/IAE.0b013e3181ed8dc9.
|
11. |
Cheung R, Ly A, Katalinic P, et al. Visualisation of peripheral retinal degenerations and anomalies with ocular imaging[J]. Semin Ophthalmol, 2022, 37(5): 554-582. DOI: 10.1080/08820538.2022.2039222.
|
12. |
Sato K, Tsunakawa N, Inaba K, et al. Fluorescein angiography on retinal detachment and lattice degeneration. I. Equatorial degeneration with idiopathic retinal detachment[J]. Nippon Ganka Gakkai Zasshi, 1971, 75: 635-642.
|
13. |
Provis JM. Development of the primate retinal vasculature[J]. Prog Retin Eye Res, 2001, 20(6): 799-821. DOI: 10.1016/s1350-9462(01)00012-x.
|
14. |
Andrés-Blasco I, Gallego-Martínez A, Machado X, et al. Oxidative stress, inflammatory, angiogenic, and apoptotic molecules in proliferative diabetic retinopathy and diabetic macular edema patients[J/OL]. Int J Mol Sci, 2023, 24(9): 8227[2023-05-04]. https://pubmed.ncbi.nlm.nih.gov/37175931/. DOI: 10.3390/ijms24098227.
|
15. |
Urbančič M, Petrovič D, Živin AM, et al. Correlations between vitreous cytokine levels and inflammatory cells in fibrovascular membranes of patients with proliferative diabetic retinopathy[J]. Mol Vis, 2020, 26: 472-482.
|
16. |
Saddala MS, Lennikov A, Huang H. Placental growth factor regulates the pentose phosphate pathway and antioxidant defense systems in human retinal endothelial cells[J/OL]. J Proteomics, 2020, 217: 103682[2020-02-10]. https://pubmed.ncbi.nlm.nih.gov/32058040/. DOI: 10.1016/j.jprot.2020.103682.
|
17. |
Byer NE. Lattice degeneration of the retina[J]. Surv Ophthalmol, 1979, 23(4): 213-248. DOI: 10.1016/0039-6257(79)90048-1.
|
18. |
Okazaki S, Meguro A, Ideta R, et al. Common variants in the COL2A1 gene are associated with lattice degeneration of the retina in a Japanese population[J]. Mol Vis, 2019, 25: 843-850.
|