1. |
Spaide RF, Hall L, Haas A, et al. Indocyanine green videoangiography of older patients with central serous chorioretinopathy[J]. Retina, 1996, 16(3): 203-213. DOI: 10.1097/00006982-199616030-00004.
|
2. |
Spaide RF, Gemmy CC, Matsumoto H, et al. Venous overload choroidopathy: a hypothetical framework for central serous chorioretinopathy and allied disorders[J/OL]. Prog Retin Eye Res, 2022, 86: 100973[2021-05-21]. https://pubmed.ncbi.nlm.nih.gov/34029721/. DOI: 10.1016/j.preteyeres.2021.100973.
|
3. |
Matsumoto H, Hoshino J, Mukai R, et al. Pulsation of anastomotic vortex veins in pachychoroid spectrum diseases[J/OL]. Sci Rep, 2021, 11(1): 14942[2021-07-22]. https://pubmed.ncbi.nlm.nih.gov/34294774/. DOI: 10.1038/s41598-021-94412-0.
|
4. |
Jung JJ, Yu D, Ito K, et al. Quantitative assessment of asymmetric choroidal outflow in pachychoroid eyes on ultra-widefield indocyanine green angiography[J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 50. DOI: 10.1167/iovs.61.8.50.
|
5. |
Spaide RF. Choroidal blood flow: review and potential explanation for the choroidal venous anatomy including the vortex vein system[J]. Retina, 2020, 40(10): 1851-1864. DOI: 10.1097/IAE.0000000000002931.
|
6. |
Spaide RF. The ambiguity of pachychoroid[J]. Retina, 2021, 41(2): 231-237. DOI: 10.1097/IAE.0000000000003057.
|
7. |
Yu PK, Tan PE, Cringle SJ, et al. Phenotypic heterogeneity in the endothelium of the human vortex vein system[J]. Exp Eye Res, 2013, 115: 144-152. DOI: 10.1016/j.exer.2013.07.006.
|
8. |
Yu DY, Yu PK, Cringle SJ, et al. Functional and morphological characteristics of the retinal and choroidal vasculature[J]. Prog Retin Eye Res, 2014, 40: 53-93. DOI: 10.1016/j.preteyeres.2014.02.001.
|
9. |
Kutoglu T, Yalcin B, Kocabiyik N, et al. Vortex veins: anatomic investigations on human eyes[J]. Clin Anat, 2005, 18(4): 269-273. DOI: 10.1002/ca.20092.
|
10. |
Lim MC, Bateman JB, Glasgow BJ. Vortex vein exit sites. Scleral coordinates[J]. Ophthalmology, 1995, 102(6): 942-946. DOI: 10.1016/s0161-6420(95)30930-x.
|
11. |
Tarabishy AB, Ahn E, Mandell BF, et al. Central serous retinopathy[J]. Arthritis Care Res (Hoboken), 2011, 63(8): 1075-1082. DOI: 10.1002/acr.20485.
|
12. |
Pang CE, Shah VP, Sarraf D, et al. Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy[J]. Am J Ophthalmol, 2014, 158(2): 362-371. DOI: 10.1016/j.ajo.2014.04.021.
|
13. |
Imanaga N, Terao N, Nakamine S, et al. Scleral thickness in central serous chorioretinopathy[J]. Ophthalmol Retina, 2021, 5(3): 285-291. DOI: 10.1016/j.oret.2020.07.011.
|
14. |
Aichi T, Terao N, Imanaga N, et al. Scleral thickness in the fellow eyes of patients with unilateral central serous chorioretinopathy[J]. Retina, 2023, 43(9): 1573-1578. DOI: 10.1097/IAE.000000 0000003850.
|
15. |
Terao N, Imanaga N, Wakugawa S, et al. Short axial length is related to asymmetric vortex veins in central serous chorioretinopathy[J/OL]. Ophthalmol Sci, 2021, 1(4): 100071[2021-10-26]. https://pubmed.ncbi.nlm.nih.gov/36246946/. DOI: 10.1016/j.xops.2021.100071.
|
16. |
Iida T, Kishi S, Hagimura N, et al. Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy[J]. Retina, 1999, 19(6): 508-512. DOI: 10.1097/00006982-199911000-00005.
|
17. |
Hayreh SS, Baines JA. Occlusion of the vortex veins. An experimental study[J]. Br J Ophthalmol, 1973, 57(4): 217-238. DOI: 10.1136/bjo.57.4.217.
|
18. |
Sachsenwenger R, Lukoff L. Animal experimental studies on the sequelae of surgical occlusion of the vortex veins[J]. Klin Monbl Augenheilkd Augenarztl Fortbild, 1959, 134(3): 364-373.
|
19. |
Kaye R, Chandra S, Sheth J, et al. Central serous chorioretinopathy: an update on risk factors, pathophysiology and imaging modalities[J/OL]. Prog Retin Eye Res, 2020, 79: 100865[2020-05-11]. https://pubmed.ncbi.nlm.nih.gov/32407978/. DOI: 10.1016/j.preteyeres.2020.100865.
|
20. |
Ramtohul P, Cabral D, Oh D, et al. En face ultrawidefield OCT of the vortex vein system in central serous chorioretinopathy[J]. Ophthalmol Retina, 2023, 7(4): 346-353. DOI: 10.1016/j.oret.2022.10.001.
|
21. |
Bacci T, Oh DJ, Singer M, et al. Ultra-widefield indocyanine green angiography reveals patterns of choroidal venous insufficiency influencing pachychoroid disease[J]. Invest Ophthalmol Vis Sci, 2022, 63(1): 17. DOI: 10.1167/iovs.63.1.17.
|
22. |
Matsumoto H, Hoshino J, Arai Y, et al. Quantitative measures of vortex veins in the posterior pole in eyes with pachychoroid spectrum diseases[J/OL]. Sci Rep, 2020, 10(1): 19505[2020-11-11]. https://pubmed.ncbi.nlm.nih.gov/33177540/. DOI: 10.1038/s41598-020-75789-w.
|
23. |
Kishi S, Matsumoto H. A new insight into pachychoroid diseases: remodeling of choroidal vasculature[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(11): 3405-3417. DOI: 10.1007/s00417-022-05687-6.
|
24. |
Spaide RF, Ledesma-Gil G, Gemmy CC. Intervortex venous anastomosis in pachychoroid-related disorders[J]. Retina, 2021, 41(5): 997-1004. DOI: 10.1097/IAE.0000000000003004.
|
25. |
Jeong S, Kang W, Noh D, et al. Choroidal vascular alterations evaluated by ultra-widefield indocyanine green angiography in central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(6): 1887-1898. DOI: 10.1007/s00417-021-05461-0.
|
26. |
Funatsu R, Sonoda S, Terasaki H, et al. Choroidal morphologic features in central serous chorioretinopathy using ultra-widefield optical coherence tomography[J]. Graefe's Arch Clin Exp Ophthalmol, 2023, 261(4): 971-979. DOI: 10.1007/s00417-022-05905-1.
|
27. |
Matsumoto H, Hoshino J, Mukai R, et al. Vortex vein anastomosis at the watershed in pachychoroid spectrum diseases[J]. Ophthalmol Retina, 2020, 4(9): 938-945. DOI: 10.1016/j.oret.2020.03.024.
|
28. |
Baek J, Lee JH, Jung BJ, et al. Morphologic features of large choroidal vessel layer: age-related macular degeneration, polypoidal choroidal vasculopathy, and central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(12): 2309-2317. DOI: 10.1007/s00417-018-4143-1.
|
29. |
Kuroda S, Ikuno Y, Yasuno Y, et al. Choroidal thickness in central serous chorioretinopathy[J]. Retina, 2013, 33(2): 302-308. DOI: 10.1097/IAE.0b013e318263d11f.
|
30. |
Matsumoto H, Mukai R, Saito K, et al. Vortex vein congestion in the monkey eye: a possible animal model of pachychoroid[J/OL]. PLoS One, 2022, 17(9): e274137[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/36048858/. DOI: 10.1371/journal.pone.0274137.
|
31. |
Takahashi K, Kishi S, Muraoka K, et al. Radiation choroidopathy with remodeling of the choroidal venous system[J]. Am J Ophthalmol, 1998, 125(3): 367-373. DOI: 10.1016/s0002-9394(99)80148-2.
|
32. |
Hiroe T, Kishi S. Dilatation of asymmetric vortex vein in central serous chorioretinopathy[J]. Ophthalmol Retina, 2018, 2(2): 152-161. DOI: 10.1016/j.oret.2017.05.013.
|
33. |
Brinks J, van Dijk E, Meijer OC, et al. Choroidal arteriovenous anastomoses: a hypothesis for the pathogenesis of central serous chorioretinopathy and other pachychoroid disease spectrum abnormalities[J]. Acta Ophthalmol, 2022, 100(8): 946-959. DOI: 10.1111/aos.15112.
|
34. |
Kishi S, Matsumoto H, Sonoda S, et al. Geographic filling delay of the choriocapillaris in the region of dilated asymmetric vortex veins in central serous chorioretinopathy[J/OL]. PLoS One, 2018, 13(11): e206646[2018-11-09]. https://pubmed.ncbi.nlm.nih.gov/30412594/. DOI: 10.1371/journal.pone.0206646.
|
35. |
van Dijk E, Feenstra H, Bjerager J, et al. Comparative efficacy of treatments for chronic central serous chorioretinopathy: a systematic review with network meta-analyses[J]. Acta Ophthalmol, 2023, 101(2): 140-159. DOI: 10.1111/aos.15263.
|
36. |
Kang K, Bacci S. Photodynamic therapy[J]. Biomedicines, 2022, 10(11): 2701. DOI: 10.3390/biomedicines10112701.
|
37. |
van Rijssen TJ, van Dijk E, Yzer S, et al. Central serous chorioretinopathy: towards an evidence-based treatment guideline[J/OL]. Prog Retin Eye Res, 2019, 73: 100770[2019-07-15]. https://pubmed.ncbi.nlm.nih.gov/31319157/. DOI: 10.1016/j.preteyeres.2019.07.003.
|
38. |
Robertson DM. Anterior segment ischemia after segmental episcleral buckling and cryopexy[J]. Am J Ophthalmol, 1975, 79(5): 871-874. DOI: 10.1016/0002-9394(75)90748-5.
|
39. |
Doi N, Uemura A, Nakao K. Complications associated with vortex vein damage in scleral buckling surgery for rhegmatogenous retinal detachment[J]. Jpn J Ophthalmol, 1999, 43(3): 232-238. DOI: 10.1016/s0021-5155(99)00009-x.
|
40. |
Cheung N, McNab AA. Venous anatomy of the orbit[J]. Invest Ophthalmol Vis Sci, 2003, 44(3): 988-995. DOI: 10.1167/iovs.02-0865.
|
41. |
Kita M, Negi A, Kawano S, et al. The effects of vortex vein ligation and partial scleral resection on the subretinal fluid resorption[J]. Nippon Ganka Gakkai Zasshi, 1990, 94(3): 263-268.
|
42. |
Takahashi K, Kishi S. Remodeling of choroidal venous drainage after vortex vein occlusion following scleral buckling for retinal detachment[J]. Am J Ophthalmol, 2000, 129(2): 191-198. DOI: 10.1016/s0002-9394(99)00425-0.
|
43. |
Sutoh N, Muraoka K, Takahashi K, et al. Remodelling of choroidal circulation in carotid cavernous sinus fistula[J]. Retina, 1996, 16(6): 497-504. DOI: 10.1097/00006982-199616060-00005.
|