1. |
Cheung CMG, Lai TYY, Teo K, et al. Polypoidal choroidal vasculopathy: consensus nomenclature and non-indocyanine green angiograph diagnostic criteria from the Asia-Pacific Ocular Imaging Society PCV workgroup[J]. Ophthalmology, 2021, 128(3): 443-452. DOI: 10.1016/j.ophtha.2020.08.006.
|
2. |
Coscas G, Yamashiro K, Coscas F, et al. Comparison of exudative age-related macular degeneration subtypes in Japanese and French patients: multicenter diagnosis with multimodal imaging[J]. Am J Ophthalmol, 2014, 158(2): 309-318. DOI: 10.1016/j.ajo.2014.05.004.
|
3. |
Cheung CMG, Lai TYY, Ruamviboonsuk P, et al. Polypoidal choroidal vasculopathy: definition, pathogenesis, diagnosis, and management[J]. Ophthalmology, 2018, 125(5): 708-724. DOI: 10.1016/j.ophtha.2017.11.019.
|
4. |
Nguyen QD, Das A, Do DV, et al. Brolucizumab: evolution through preclinical and clinical studies and the implications for the management of neovascular age-related macular degeneration[J]. Ophthalmology, 2020, 127(7): 963-976. DOI: 10.1016/j.ophtha.2019.12.031.
|
5. |
Dugel PU, Singh RP, Koh A, et al. HAWK and HARRIER: ninety-six-week outcomes from the phase 3 trials of Brolucizumab for neovascular age-related macular degeneration[J]. Ophthalmology, 2021, 128(1): 89-99. DOI: 10.1016/j.ophtha.2020.06.028.
|
6. |
Dugel PU, Koh A, Ogura Y, et al. HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of Brolucizumab for neovascular age-related macular degeneration[J]. Ophthalmology, 2020, 127(1): 72-84. DOI: 10.1016/j.ophtha.2019.04.017.
|
7. |
Ogura Y, Jaffe GJ, Cheung C, et al. Efficacy and safety of Brolucizumab versus Aflibercept in eyes with polypoidal choroidal vasculopathy in Japanese participants of HAWK[J]. Br J Ophthalmol, 2022, 106(7): 994-999. DOI: 10.1136/bjophthalmol-2021-319090.
|
8. |
Matsumoto H, Hoshino J, Mukai R, et al. Short-term outcomes of intravitreal brolucizumab for treatment-naive neovascular age-related macular degeneration with type 1 choroidal neovascularization including polypoidal choroidal vasculopathy[J/OL]. Sci Rep, 2021, 11(1): 6759[2021-03-24]. https://pubmed.ncbi.nlm.nih.gov/33762600/. DOI: 10.1038/s41598-021-86014-7.
|
9. |
Rübsam A, Rau S, Pilger D, et al. Early OCT angiography changes of macular neovascularization in patients with exudative AMD treated with Brolucizumab in a real-world setting[J/OL]. J Ophthalmol, 2022, 2022: 2659714[2022-03-25]. https://pubmed.ncbi.nlm.nih.gov/35369000/. DOI: 10.1155/2022/2659714.
|
10. |
Toto L, Ruggeri ML, D'Aloisio R, et al. Brolucizumab intravitreal injection in macular neovascularization type 1: VA, SD-OCT and OCTA parameters changes during a 16-weeks follow up[J]. Ophthalmic Res, 2023, 66(1): 218-227. DOI: 10.1159/000526851.
|
11. |
Ota H, Takeuchi J, Nakano Y, et al. Switching from Aflibercept to brolucizumab for the treatment of refractory neovascular age-related macular degeneration[J]. Jpn J Ophthalmol, 2022, 66(3): 278-284. DOI: 10.1007/s10384-022-00908-1.
|
12. |
Sharma A, Kumar N, Parachuri N, et al. Brolucizumab-early real-world experience: BREW study[J]. Eye (Lond), 2021, 35(4): 1045-1047. DOI: 10.1038/s41433-020-1111-x.
|
13. |
Enriquez AB, Baumal CR, Crane AM, et al. Early experience with Brolucizumab treatment of neovascular age-related macular degeneration[J]. JAMA Ophthalmol, 2021, 139(4): 441-448. DOI: 10.1001/jamaophthalmol.2020.7085.
|