1. |
Moore DL, Blackmore MG, Hu Y, et al. KLF family members regulate intrinsic axon regeneration ability[J]. Science, 2009, 326(5950): 298-301. DOI: 10.1126/science.1175737.
|
2. |
Zhong Y, Shen X, Liu X, et al. The early effect of nerve growth factor in the management of serious optic nerve contusion[J]. Clin Exp Optom, 2010, 93(6): 466-470. DOI: 10.1111/j.1444-0938.2010.00523.x.
|
3. |
Mesentier-Louro LA, Rosso P, Carito V, et al. Nerve growth factor role on retinal ganglion cell survival and axon regrowth: effects of ocular administration in experimental model of optic nerve injury[J]. Mol Neurobiol, 2019, 56(2): 1056-1069. DOI: 10.1007/s12035-018-1154-1.
|
4. |
Lambiase A, Aloe L, Centofanti M, et al. Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: implications for glaucoma[J]. Proc Natl Acad Sci USA, 2009, 106(32): 13469-13474. DOI: 10.1073/pnas.0906678106.
|
5. |
Sánchez-Migallón MC, Valiente-Soriano FJ, Nadal-Nicolás FM, et al. Apoptotic retinal ganglion cell death after optic nerve transection or crush in mice: delayed RGC loss with BDNF or a caspase 3 inhibitor[J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 81-93. DOI: 10.1167/iovs.15-17841.
|
6. |
Laughter MR, Bardill JR, Ammar DA, et al. Injectable neurotrophic factor delivery system supporting retinal ganglion cell survival and regeneration following optic nerve crush[J]. ACS Biomater Sci Eng, 2018, 4(9): 3374-3383. DOI: 10.1021/acsbiomaterials.8b00803.
|
7. |
Dulz S, Bassal M, Flachsbarth K, et al. Intravitreal co-administration of GDNF and CNTF confers synergistic and long-lasting protection against injury-induced cell death of retinal ganglion cells in mice[J/OL]. Cells, 2020, 9(9): 2082[2020-09-11]. https://pubmed.ncbi.nlm.nih.gov/32932933/. DOI: 10.3390/cells9092082.
|
8. |
Williams PA, Harder JM, Foxworth NE, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice[J]. Science, 2017, 355(6326): 756-760. DOI: 10.1126/science.aal0092.
|
9. |
Lou X, Hu Y, Zhang H, et al. Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury[J]. J Nanobiotechnology, 2021, 19(1): 436. DOI: 10.1186/s12951-021-01199-3.
|
10. |
Tansley K. The development of the rat eye in graft[J]. J Exp Biol, 1946, 22: 221-224. DOI: 10.1242/jeb.22.3-4.221.
|
11. |
Oswald J, Kegeles E, Minelli T, et al. Transplantation of miPSC/mESC-derived retinal ganglion cells into healthy and glaucomatous retinas[J]. Mol Ther Methods Clin Dev, 2021, 21: 180-198. DOI: 10.1016/j.omtm.2021.03.004.
|
12. |
Divya MS, Rasheed VA, Schmidt T, et al. Intraocular injection of ES cell-derived neural progenitors improve visual function in retinal ganglion cell-depleted mouse models[J/OL]. Front Cell Neurosci, 2017, 11: 295[2017-09-20]. https://pubmed.ncbi.nlm.nih.gov/28979193/. DOI: 10.3389/fncel.2017.00295.
|
13. |
Chao JR, Lamba DA, Klesert TR, et al. Transplantation of human embryonic stem cell-derived retinal cells into the subretinal space of a non-human primate[J]. Transl Vis Sci Technol, 2017, 6(3): 4. DOI: 10.1167/tvst.6.3.4.
|
14. |
Mead B, Amaral J, Tomarev S. Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 702-714. DOI: 10.1167/iovs.17-22855.
|
15. |
Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms[J]. Stem Cells Transl Med, 2017, 6(4): 1273-1285. DOI: 10.1002/sctm.16-0428.
|
16. |
Cui Y, Liu C, Huang L, et al. Protective effects of intravitreal administration of mesenchymal stem cell-derived exosomes in an experimental model of optic nerve injury[J/OL]. Exp Cell Res, 2021, 407(1): 112792[2021-08-27]. https://pubmed.ncbi.nlm.nih.gov/34454924/. DOI: 10.1016/j.yexcr.2021.112792.
|
17. |
Park KK, Liu K, Hu Y, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway[J]. Science, 2008, 322(5903): 963-966. DOI: 10.1126/science.1161566.
|
18. |
Smith PD, Sun F, Park KK, et al. SOCS3 deletion promotes optic nerve regeneration in vivo[J]. Neuron, 2009, 64(5): 617-623. DOI: 10.1016/j.neuron.2009.11.021.
|
19. |
Sun F, Park KK, Belin S, et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3[J]. Nature, 2011, 480(7377): 372-375. DOI: 10.1038/nature10594.
|
20. |
de Lima S, Koriyama Y, Kurimoto T, et al. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors[J]. Proc Natl Acad Sci USA, 2012, 109(23): 9149-9154. DOI: 10.1073/pnas.1119449109.
|
21. |
Apara A, Galvao J, Wang Y, et al. KLF9 and JNK3 interact to suppress axon regeneration in the adult CNS[J]. J Neurosci, 2017, 37(40): 9632-9644. DOI: 10.1523/JNEUROSCI.0643-16.2017.
|
22. |
Wang XW, Li Q, Liu CM, et al. Lin28 signaling supports mammalian PNS and CNS axon regeneration[J]. Cell Rep, 2018, 24(10): 2540-2552. DOI: 10.1016/j.celrep.2018.07.105.
|
23. |
Tran NM, Shekhar K, Whitney IE, et al. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes[J]. Neuron, 2019, 104(6): 1039-1055. DOI: 10.1016/j.neuron.2019.11.006.
|
24. |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
|
25. |
Guo M, Zhu Y, Shi Y, et al. Inhibition of ferroptosis promotes retina ganglion cell survival in experimental optic neuropathies[J/OL]. Redox Biol, 2022, 58: 102541[2022-11-15]. https://pubmed.ncbi.nlm.nih.gov/36413918/. DOI: 10.1016/j.redox.2022.102541.
|
26. |
Yao Y, Xu Y, Liang JJ, et al. Longitudinal and simultaneous profiling of 11 modes of cell death in mouse retina post-optic nerve injury[J/OL]. Exp Eye Res, 2022, 222: 109159[2022-06-23]. https://pubmed.ncbi.nlm.nih.gov/35753433/. DOI: 10.1016/j.exer.2022.109159.
|