1. |
Shadrach KG, Rayborn ME, Hollyfield JG, et al. DJ-1-dependent regulation of oxidative stress in the retinal pigment epithelium (RPE)[J/OL]. PLoS One, 2013, 8(7): e67983[2013-07-02]. https://pubmed.ncbi.nlm.nih.gov/23844142/. DOI: 10.1371/journal.pone.0067983.
|
2. |
Bang E, Park C, Hwangbo H, et al. Spermidine attenuates high glucose-induced oxidative damage in retinal pigment epithelial cells by inhibiting production of ROS and NF-κB/NLRP3 inflammasome pathway[J/OL]. Int J Mol Sci, 2023, 24(13): 10550[2023-06-23]. https://pubmed.ncbi.nlm.nih.gov/37445726/. DOI: 10.3390/ijms241310550.
|
3. |
Tong Y, Wu Y, Ma J, et al. Comparative mechanistic study of RPE cell death induced by different oxidative stresses[J/OL]. Redox Biology, 2023, 65: 102840[2023-08-06]. https://pubmed.ncbi.nlm.nih.gov/37566944/. DOI: 10.1016/j.redox.2023.102840.
|
4. |
Tong S, Xia M, Xu Y, et al. Identification and validation of a novel prognostic signature based on mitochondria and oxidative stress related genes for glioblastoma[J]. J Transl Med, 2023, 21(1): 136. DOI: 10.1186/s12967-023-03970-6.
|
5. |
Qi N, Xing W, Li M, et al. Quercetin alleviates toxicity induced by high levels of copper in porcine follicular granulosa cells by scavenging reactive oxygen species and improving mitochondrial function[J]. Animals (Basel), 2023, 13(17): 2745. DOI: 10.3390/ani13172745.
|
6. |
Peyer SM, Kremer N, McFall Ngai MJ. Involvement of a host Cathepsin L in symbiont‐induced cell death[J/OL]. Microbiologyopen, 2018, 7(5): e00632[2018-04-24]. https://pubmed.ncbi.nlm.nih.gov/29692003/. DOI: 10.1002/mbo3.632.
|
7. |
Pan X, Yu Y, Chen Y, et al. Cathepsin L was involved in vascular aging by mediating phenotypic transformation of vascular cells[J/OL]. Arch Gerontol Geriatr, 2023, 104: 104828[2022-10-04]. https://pubmed.ncbi.nlm.nih.gov/36206719/. DOI: 10.1016/j.archger.2022.104828.
|
8. |
Shen X, Zhao Y, Xu S, et al. Cathepsin L induced PC-12 cell apoptosis via activation of B-Myb and regulation of cell cycle proteins[J]. Acta pharmacologica Sinica, 2019, 40(11): 1394-1403. DOI: 10.1038/s41401-019-0286-9.
|
9. |
Thirusangu P, Pathoulas CL, Ray U, et al. Quinacrine-induced autophagy in ovarian cancer triggers cathepsin-L mediated lysosomal/mitochondrial membrane permeabilization and cell death[J]. Cancers, 2021, 13(9): 2004. DOI: 10.3390/cancers 13092004.
|
10. |
Yamano K, Kinefuchi H, Kojima W. Mitochondrial quality control via organelle and protein degradation[J/OL]. J Biochem, 2023: E1(2023-12-07)[2023-12-15]. https://pubmed.ncbi.nlm.nih.gov/38102729/. DOI: 10.1093/jb/mvad106.
|
11. |
Luo M, Su Z, Gao H, et al. Cirsiliol induces autophagy and mitochondrial apoptosis through the AKT/FOXO1 axis and influences methotrexate resistance in osteosarcoma[J]. J Transl Med, 2023, 21(1): 907. DOI: 10.1186/s12967-023-04682-7.
|
12. |
Tian Z, Jiang S, Zhou J, et al. Copper homeostasis and cuproptosis in mitochondria[J/OL]. Life Sci, 2023, 334: 122223[2023-12-01]. https://pubmed.ncbi.nlm.nih.gov/38084674/. DOI: 10.1016/j.lfs.2023.122223.
|
13. |
Lee MH, Kim HL, Seo H, et al. A secreted form of chorismate mutase (Rv1885c) in mycobacterium bovis BCG contributes to pathogenesis by inhibiting mitochondria-mediated apoptotic cell death of macrophages[J]. J Biomed Sci, 2023, 30(1): 95. DOI: 10.1186/s12929-023-00988-2.
|
14. |
Renaud C, Trillet K, Jardine J, et al. The centrosomal protein 131 participates in the regulation of mitochondrial apoptosis[J]. Commun Biol, 2023, 6(1): 1271. DOI: 10.1038/s42003-023-05676-3.
|
15. |
Hou X, Han L, An B, et al. Mitochondria and lysosomes participate in Vip3Aa-induced spodoptera frugiperda Sf9 cell apoptosis[J]. Toxins, 2020, 12(2): 116. DOI: 10.3390/toxins12020116.
|
16. |
Chaudhry A, Shi R, Luciani DS. A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells[J/OL]. Am J Physiol Endocrinol Metab, 2020, 318(2): E87-101[2020-02-01]. https://pubmed.ncbi.nlm.nih.gov/31846372/. DOI: 10.1152/ajpendo.00457.2019.
|
17. |
Valente AJ, Maddalena LA, Robb EL, et al. A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture[J]. Acta Histochem, 2017, 119(3): 315-326. DOI: 10.1016/j.acthis.2017.03.001.
|
18. |
Xu S, Zhang H, Yang X, et al. Inhibition of cathepsin L alleviates the microglia-mediated neuroinflammatory responses through caspase-8 and NF-κB pathways[J]. Neurobiol Aging, 2018, 62: 159-167. DOI: 10.1016/j.neurobiolaging.2017.09.030.
|
19. |
Campden RI, Zhang Y. The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation[J]. Arch Biochem Biophys, 2019, 670: 32-42. DOI: 10.1016/j.abb.2019.02.015.
|
20. |
Gomes CP, Fernandes DE, Casimiro F, et al. Cathepsin L in COVID-19: from pharmacological evidences to genetics[J/OL]. Front Cell Infect Microbiol, 2020, 10: 589505[2020-12-08]. https://pubmed.ncbi.nlm.nih.gov/33364201/. DOI: 10.3389/fcimb.2020.589505.
|
21. |
Feng L, Liang L, Zhang S, et al. HMGB1 downregulation in retinal pigment epithelial cells protects against diabetic retinopathy through the autophagy-lysosome pathway[J]. Autophagy, 2022, 18(2): 320-339. DOI: 10.1080/15548627.2021.1926655.
|
22. |
Khuanjing T, Maneechote C, Ongnok B, et al. Acetylcholinesterase inhibition protects against trastuzumab-induced cardiotoxicity through reducing multiple programmed cell death pathways[J]. Mol Med, 2023, 29(1): 123. DOI: 10.1186/s10020-023-00686-7.
|
23. |
Mohamed AK, Ezhilarasan D, Shree HK. Coleus vettiveroides ethanolic root extract induces cytotoxicity by intrinsic apoptosis in HepG2 cells[J]. J Appl Toxicol, 2024, 44(2): 245-259. DOI: 10.1002/jat.4536.
|
24. |
Gorospe CM, Carvalho G, Herrera Curbelo A, et al. Mitochondrial membrane potential acts as a retrograde signal to regulate cell cycle progression[J/OL]. Life Sci Alliance, 2023, 6(12): e202302091[2023-09-11]. https://pubmed.ncbi.nlm.nih.gov/37696576/. DOI: 10.26508/lsa.202302091.
|
25. |
Siemers KM, Klein AK, Baack ML. Mitochondrial dysfunction in PCOS: insights into reproductive organ pathophysiology[J/OL]. Int J Mol Sci, 2023, 24(17): 13123[2023-08-23]. https://pubmed.ncbi.nlm.nih.gov/37685928/. DOI: 10.3390/ijms241713123.
|
26. |
Fu G, Chen AF, Xu Q, et al. Cathepsin L deficiency results in reactive oxygen species (ROS) accumulation and vascular cells activation[J]. Free Radic Res, 2017, 51(11-12): 932-942. DOI: 10.1080/10715762.2017.1393665.
|
27. |
Bock FJ, Tait S. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 85-100. DOI: 10.1038/s41580-019-0173-8.
|
28. |
Lankelma JM, Voorend DM, Barwari T, et al. Cathepsin L, target in cancer treatment?[J]. Life Sci, 2010, 86(7-8): 225-233. DOI: 10.1016/j.lfs.2009.11.016.
|
29. |
Lopes De Faria JM, Duarte DA, Montemurro C, et al. Defective autophagy in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2016, 57(10): 4356-4366. DOI: 10.1167/iovs.16-19197.
|
30. |
Choi SI, Woo JH, Kim EK. Lysosomal dysfunction of corneal fibroblasts underlies the pathogenesis of granular corneal dystrophy type 2 and can be rescued by TFEB[J]. J Cell Mol Med, 2020, 24(18): 10343-10355. DOI: 10.1111/jcmm.15646.
|
31. |
Dana D, Pathak SK. A review of small molecule inhibitors and functional probes of human cathepsin L[J]. Molecules, 2020, 25(3): 698. DOI: 10.3390/molecules25030698.
|
32. |
Niu R, Wang J, Geng C, et al. Tandem mass tag-based proteomic analysis reveals cathepsin-mediated anti-autophagic and pro-apoptotic effects under proliferative diabetic retinopathy[J]. Aging (Albany NY), 2020, 13(1): 973-990. DOI: 10.18632/aging.202217.
|