1. |
Gardner E, Mole SE. The genetic basis of phenotypic heterogeneity in the neuronal ceroid lipofuscinoses[J/OL]. Front Neurol, 2021, 12: 754045[2021-10-18]. https://pubmed.ncbi.nlm.nih.gov/34733232/. DOI: 10.3389/fneur.2021.754045.
|
2. |
Kohlschütter A, Schulz A, Bartsch U, et al. Current and emerging treatment strategies for neuronal ceroid lipofuscinoses[J]. CNS Drugs, 2019, 33(4): 315-325. DOI: 10.1007/s40263-019-00620-8.
|
3. |
Mole SE, Anderson G, Band HA, et al. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis[J]. Lancet Neurol, 2019, 18(1): 107-116. DOI: 10.1016/S1474-4422(18)30368-5.
|
4. |
Kousi M, Siintola E, Dvorakova L, et al. Mutations in CLN7/MFSD8 are a common cause of variant late-infantile neuronal ceroid lipofuscinosis[J]. Brain, 2009, 132(Pt 3): 810-819. DOI: 10.1093/brain/awn366.
|
5. |
Brandenstein L, Schweizer M, Sedlacik J, et al. Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7[J]. Hum Mol Genet, 2016, 25(4): 777-791. DOI: 10.1093/hmg/ddv615.
|
6. |
Fudalej E, Justyniarska M, Kasarełło K, et al. Neuroprotective factors of the retina and their role in promoting survival of retinal ganglion cells: a review[J]. Ophthalmic Res, 2021, 64(3): 345-355. DOI: 10.1159/000514441.
|
7. |
Ohnaka M, Miki K, Gong YY, et al. Long-term expression of glial cell line-derived neurotrophic factor slows, but does not stop retinal degeneration in a model of retinitis pigmentosa[J]. J Neurochem, 2012, 122(5): 1047-1053. DOI: 10.1111/j.1471-4159.2012.07842.x.
|
8. |
Kolomeyer AM, Zarbin MA. Zarbin, trophic factors in the pathogenesis and therapy for retinal degenerative diseases[J]. Surv Ophthalmol, 2014, 59(2): 134-165. DOI: 10.1016/j.survophthal.2013.09.004.
|
9. |
Jung G, Sun J, Petrowitz B, et al. Genetically modified neural stem cells for a local and sustained delivery of neuroprotective factors to the dystrophic mouse retina[J]. Stem Cells Transl Med, 2013, 2(12): 1001-1010. DOI: 10.5966/sctm.2013-0013.
|
10. |
Jankowiak W, Kruszewski K, Flachsbarth K, et al. Sustained neural stem cell-based intraocular delivery of CNTF attenuates photoreceptor loss in the nclf mouse model of neuronal ceroid lipofuscinosis[J/OL]. PLoS One, 2015, 10(5): e0127204[2015-05-20]. https://pubmed.ncbi.nlm.nih.gov/25992714/. DOI: 10.1371/journal.pone.0127204.
|
11. |
Flachsbarth K, Kruszewski K, Jung G, et al. Neural stem cell-based intraocular administration of ciliary neurotrophic factor attenuates the loss of axotomized ganglion cells in adult mice[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7029-7039. DOI: 10.1167/iovs.14-15266.
|
12. |
Cuenca N, Fernández-Sánchez L, Campello L, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases[J]. Prog Retin Eye Res, 2014, 43: 17-75. DOI: 10.1016/j.preteyeres.2014.07.001.
|
13. |
Dulz S, Bassal M, Flachsbarth K, et al. Intravitreal co-administration of GDNF and CNTF confers synergistic and long-lasting protection against injury-induced cell death of retinal ganglion cells in mice[J]. Cells, 2020, 9(9): 2082. DOI: 10.3390/cells9092082.
|
14. |
Flachsbarth K, Jankowiak W, Kruszewski K, et al. Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse[J]. Exp Eye Res, 2018, 176: 258-265. DOI: 10.1016/j.exer.2018.09.006.
|
15. |
Zein WM, Jeffrey BG, Wiley HE, et al. CNGB3-achromatopsia clinical trial with CNTF: diminished rod pathway responses with no evidence of improvement in cone function[J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6301-6308. DOI: 10.1167/iovs.14-14860.
|
16. |
Wang Y, Zeng W, Lin B, et al. CLN7 is an organellar chloride channel regulating lysosomal function[J/OL]. Sci Adv, 2021, 7(51): eabj9608[2021-12-15]. https://pubmed.ncbi.nlm.nih.gov/34910516/. DOI: 10.1126/sciadv.abj9608.
|
17. |
Jankowiak W, Brandenstein L, Dulz S, et al. Retinal degeneration in mice deficient in the lysosomal membrane protein CLN7[J]. Invest Ophthalmol Vis Sci, 2016, 57(11): 4989-4998. DOI: 10.1167/iovs.16-20158.
|
18. |
Rowe AA, Chen X, Nettesheim ER, et al. Long-term progression of retinal degeneration in a preclinical model of CLN7 Batten disease as a baseline for testing clinical therapeutics[J/OL]. EBioMedicine, 2022, 85: 104314[2022-10-29]. https://pubmed.ncbi.nlm.nih.gov/36374771/. DOI: 10.1016/j.ebiom.2022.104314.
|
19. |
Bartsch U, Galliciotti G, Jofre GF, et al. Apoptotic photoreceptor loss and altered expression of lysosomal proteins in the nclf mouse model of neuronal ceroid lipofuscinosis[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 6952-6959. DOI: 10.1167/iovs.13-12945.
|
20. |
Mirza M, Volz C, Karlstetter M, et al. Progressive retinal degeneration and glial activation in the CLN6 (nclf) mouse model of neuronal ceroid lipofuscinosis: a beneficial effect of DHA and curcumin supplementation[J/OL]. PLoS One, 2013, 8(10): e75963[2013-10-04]. https://pubmed.ncbi.nlm.nih.gov/24124525/. DOI: 10.1371/annotation/ae907882-62e0-4803-8c00-35b30a649fe9.
|
21. |
Kleine Holthaus SM, Ribeiro J, Abelleira-Hervas L, et al. Prevention of photoreceptor cell loss in a Cln6(nclf) mouse model of Batten disease requires CLN6 gene transfer to bipolar cells[J]. Mol Ther, 2018, 26(5): 1343-1353. DOI: 10.1016/j.ymthe.2018.02.027.
|
22. |
Soldati C, Lopez-Fabuel I, Wanderlingh LG, et al. Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype[J/OL]. EMBO Mol Med, 2021, 13(10): e13742[2021-10-07]. https://pubmed.ncbi.nlm.nih.gov/34411438/. DOI: 10.15252/emmm.202013742.
|
23. |
Chen X, Dong T, Hu Y, et al. AAV9/MFSD8 gene therapy is effective in preclinical models of neuronal ceroid lipofuscinosis type 7 disease[J/OL]. J Clin Invest, 2022, 132(5): e146286[2022-03-01]. https://pubmed.ncbi.nlm.nih.gov/35025759/. DOI: 10.1172/JCI146286.
|
24. |
Lipinski DM, Barnard AR, Singh MS, et al. CNTF gene therapy confers lifelong neuroprotection in a mouse model of human retinitis pigmentosa[J]. Mol Ther, 2015, 23(8): 1308-1319. DOI: 10.1038/mt.2015.68.
|
25. |
Rhee KD, Nusinowitz S, Chao K, et al. CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Müller glial cells[J/OL]. Proc Natl Acad Sci USA, 2013, 110(47): E4520-4529[2013-11-19]. https://pubmed.ncbi.nlm.nih.gov/24191003/. DOI: 10.1073/pnas.1303604110.
|
26. |
Baranov P, Lin H, McCabe K, et al. A novel neuroprotective small molecule for glial cell derived neurotrophic factor induction and photoreceptor rescue[J]. J Ocul Pharmacol Ther, 2017, 33(5): 412-422. DOI: 10.1089/jop.2016.0121.
|
27. |
García-Caballero C, Lieppman B, Arranz-Romera A, et al. Photoreceptor preservation induced by intravitreal controlled delivery of GDNF and GDNF/melatonin in rhodopsin knockout mice[J]. Mol Vis, 2018, 24: 733-745.
|
28. |
Kimura A, Namekata K, Guo X, et al. Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration[J]. Int J Mol Sci, 2016, 17(9): 1584. DOI: 10.3390/ijms17091584.
|
29. |
Hackett SF, Schoenfeld CL, Freund J, et al. Neurotrophic factors, cytokines and stress increase expression of basic fibroblast growth factor in retinal pigmented epithelial cells[J]. Exp Eye Res, 1997, 64(6): 865-873. DOI: 10.1006/exer.1996.0256.
|
30. |
Bush RA, Lei B, Tao W, et al. Encapsulated cell-based intraocular delivery of ciliary neurotrophic factor in normal rabbit: dose-dependent effects on ERG and retinal histology[J]. Invest Ophthalmol Vis Sci, 2004, 45(7): 2420-2430. DOI: 10.1167/iovs.03-1342.
|