- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing 100191, China;
Polypoidal choroidal vasculopathy (PCV) is originally defined as a separate disease, but with the development of imaging techniques, it has now been included in the spectrum of neovascularization. In the Asian population, the prevalence of PCV is high, and with the deepening of clinical studies, the pathological characteristics, pathogenesis and clinical manifestations of PCV have been more deeply understood. Through dynamic observation and histopathological study of PCV lesions during operation, it can be confirmed that the lesions are mainly located between the retinal pigment epithelium and the Bruch membrane, rather than originating from the choroidal circulation, which is of great significance for understanding the origin and natural course of PCV. It is worth noting that although a theoretical bridge has been established between age-related macular degeneration (AMD)/PCV, there is a lack of intuitive clinical data on the ultrastructural and molecular manifestations of the cells/stroma in the local lesions of the eye, especially the progression of AMD/PCV from early/middle stage to exudative stage. It is precisely because of this that highly attractive research topics and exploration space are proposed for the future.
Citation: Ma Zhizhong. Present view in understanding of polypoidal choroidal vasculopathy. Chinese Journal of Ocular Fundus Diseases, 2024, 40(2): 89-97. doi: 10.3760/cma.j.cn511434-20240103-00001 Copy
1. | Yannuzzi LA. Idiopathic polypoidal choroidal vasculopathy[C]. Macula Society Meeting. Miami, FL, 1982. |
2. | Yannuzzi LA, Sorenson J, Spaide RF, et al. Idiopathic polypoidal choroidal vasculopathy (IPCV)[J]. Retina, 1990, 10(1): 1-8. DOI: 10.1097/00006982-199010010-00001. |
3. | Cheung CMG, Lai TYY, Ruamviboonsuk P, et al. Polypoidal choroidal vasculopathy: definition, pathogenesis, diagnosis, and management[J]. Ophthalmology, 2018, 125(5): 708-724. DOI: 10.1016/j.ophtha.2017.11.019. |
4. | Freund KB, Zweifel SA, Engelbert M. Do we need a new classification for choroidal neovascularization in age-related macular degeneration?[J]. Retina, 2010, 30(9): 1333-1349. DOI: 10.1097/IAE.0b013e3181e7976b. |
5. | Gass JD. Biomicroscopic and histopathologic considerations regarding the feasibility of surgical excision of subfoveal neovascular membranes[J]. Am J Ophthalmol, 1994, 118(3): 285-298. DOI: 10.1016/S0002-9394(14)72951-4. |
6. | Yannuzzi LA, Negrão S, Iida T, et al. Retinal angiomatous proliferation in age-related macular degeneration[J]. Retina, 2001, 21(5): 416-434. DOI: 10.1097/00006982-200110000-00003. |
7. | Wang WL, Su X, Li X, er al. Global prevalence of age-related macular degenerationand disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J/OL]. Lancet Glob Health, 2014, 2(2): e106-e116[2014-01-03]. https://pubmed.ncbi.nlm.nih.gov/25104651/. DOI: 10.1016/S2214-109X(13)70145-1. |
8. | Liu Y, Wen F, Huang S, et al. Subtype lesions of neovascular age-related macular degeneration in chinese patients[J]. Graefe's Arch Clin Exp Ophthalmol, 2007, 245(10): 1441-1445. DOI: 10.1007/s00417-007-0575-8. |
9. | Chang YC, Wu WC. Polypoidal choroidal vasculopathy in Taiwanese patients[J]. Ophthalmic Surg Lasers Imaging, 2009, 40(6): 576-581. DOI: 10.3928/15428877-20091030-07. |
10. | Maruko I, Iida T, Saito M, et al. Clinical characteristics of exudative age-related macular degeneration in Japanese patients[J]. Am J Ophthalmol, 2007, 144(1): 15-22. DOI: 10.1016/j.ajo.2007.03.047. |
11. | Sawada T, Yasukawa T, Imaizumi H, er al. Subtype prevalence and baseline visual acuity by age in Japanese patients with neovascular age-related macular degeneration[J]. Jpn J Ophthalmol, 2023, 67(2): 149-155. DOI: 10.1007/s10384-023-00981-0. |
12. | Byeon SH, Lee SC, Oh HS, et al. Incidence and clinical patterns of polypoidal choroidalvasculopathy in Korean patients[J]. Jpn J Ophthalmol, 2008, 52(1): 57-62. DOI: 10.1007/s10384-007-0498-2. |
13. | Dat DT, Hien NDTN, Quan NN, et al. Current trends in clinical characteristics, diagnosis, and treatment of polypoidal choroidal vasculopathy: a perspective from vietnam[J]. J Clin Med, 2022, 11(16): 4678. DOI: 10.3390/jcm11164678. |
14. | Kumar M, Moptom SE, Sen P, et al. Prevalence of polypoidal choroidal vasculopathy in Indian population: risk factors, clinical and imaging characteristics[J/OL]. PLoS One, 2020, 15(4): e0231901[2020-04-28]. https://pubmed.ncbi.nlm.nih.gov/32343707/. DOI: 10.1371/journal.pone.0231901. |
15. | Cheung CMG, Lai TYY, Teo K, et al. Polypoidal choroidal vasculopathy: consensus nomenclature and non-indocyanine green angiograph diagnostic criteriafrom the Asia-Pacific Ocular Imaging Society PCV Workgroup[J]. Ophthalmology, 2021, 128(3): 443-452. DOI: 10.1016/j.ophtha.2020.08.006. |
16. | Chang TS, Freund KB, de la Cruz Z, et al. Clinicopathologic correlation of choroidal neovascularization demonstrated by indocyanine green angiography in a patient with retention of good vision for almost four years[J]. Retina, 1994, 14(2): 114-124. DOI: 10.1097/00006982-199414020-00004. |
17. | Gehrs KM, Heriot WJ, de Juan E Jr. Transmission electron microscopic study of a subretinal choroidal neovascular membrane due to age-related macular degeneration[J]. Arch Ophthalmol, 1992, 110(6): 833-837. DOI: 10.1001/archopht.1992.01080180105036. |
18. | Siedlecki J, Klaas JE, Keidel LF, et al. Progression of pachychoroid neovasculopathy into aneurysmal type 1 choroidal neovascularization or polypoidal choroidal vasculopathy[J]. Ophthalmol Retina, 2022, 6(9): 807-813. DOI: 10.1016/j.oret.2022.04.004. |
19. | Sayanagi K, Gomi F, Akiba M, et al. En-face high-penetrationoptical coherence tomography imaging in polypoidal choroidalvasculopathy[J]. Br J Ophthalmol, 2015, 99(1): 29-35. DOI: 10.1136/bjophthalmol-2013-304658. |
20. | Alasil T, Ferrara D, Adhi M, et al. En face imaging of thechoroid in polypoidal choroidal vasculopathy using sweptsource optical coherence tomography[J]. Am J Ophthalmol, 2015, 159(4): 634-643. DOI: 10.1016/j.ajo.2014.12.012. |
21. | Balaratnasingam C, Lee WK, Koizumi H, et al. Polypoidalchoroidal vasculopathy: a distinct disease or manifestation ofmany?[J]. Retina, 2016, 36(1): 1-8. DOI: 10.1097/IAE.0000000000000774. |
22. | Dansingani KK, Balaratnasingam C, Naysan J, et al. Enface imaging of pachychoroid spectrum disorders with sweptsource optical coherence tomography[J]. Retina, 2016, 36(3): 499-516. DOI: 10.1097/IAE.0000000000000742. |
23. | de Carlo TE, Kokame GT, Kaneko KN, et al. Sensitivityand specificity of detecting polypoidal choroidal vasculopathy with en face optical coherence tomography andoptical coherence tomography angiography[J]. Retina, 2019, 39(7): 1343-1352. DOI: 10.1097/IAE.0000000000002139. |
24. | Kameda T, Tsujikawa A, Otani A, et al. Polypoidal choroidal vasculopathy examined with en face optical coherence tomography[J]. Clin Exp Ophthalmol, 2007, 35(7): 596-601. DOI: 10.1111/j.1442-9071.2007.01554.x. |
25. | Saito M, Iida T, Nagayama D. Cross-sectional and en faceoptical coherence tomographic features of polypoidal choroidal vasculopathy[J]. Retina, 2008, 28(3): 459-464. DOI: 10.1097/IAE.0b013e318156db60. |
26. | Killingsworth MC, Sarks JP, Sarks SH. Macrophages related to Bruch's membrane in age-related macular degeneration[J]. Eye (Lond), 1990, 4(Pt4): 613-621. DOI: 10.1038/eye.1990.86. |
27. | Sarks S, Cherepanoff S, Killingsworth M, et al. Relationship of basal laminar deposit and membranous debris to the clinical presentation of early age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2007, 48(3): 968-977. DOI: 10.1167/iovs.06-0443. |
28. | Green WR, Enger C. Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lecture[J]. Ophthalmology, 1993, 100(10): 1519-1535. DOI: 10.1016/s0161-6420 (93)31466-1. |
29. | Bressler SB, Bressler NM, Sarks SH, et al. Age-related macular degeneration: nonneovascular early AMD, intermediate AMD, and geographic atrophy[M]//Ryan SJ. Retina. St. Louis, MO: Mosby, 2006: 1041-1074. |
30. | Reale E, Groos S, Eckardt U, et al. New components of 'basal laminar deposits' in age-related macular degeneration[J]. Cells Tissues Organs, 2009, 190(3): 170-181. DOI: 10.1159/000187632. |
31. | Green WR. Histopathology of age-related macular degeneration[J]. Mol Vis, 1999, 5: 27. |
32. | Sura AA, Chen L, Messinger JD, et al. Measuring the contributions of basal laminar deposit and Bruch's membrane in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2020, 61(13): 19. DOI: 10.1167/iovs.61.13.19. |
33. | Okubo A, Sameshima M, Uemura A, et al. Clinicopathological correlation of polypoidal choroidal vasculopathy revealed by ultrastructural study[J]. Br J Ophthalmol, 2002, 86(10): 1093-1098. DOI: 10.1136/bjo.86.10.1093. |
34. | Moussa K, Bloomer MM, Schwartz DM, et al. Polypoidal choroidal vasculopathy: a clinicopathologic study[J]. Retin Cases Brief Rep, 2017, 11(Suppl 1): S128-131. DOI: 10.1097/ICB.00000000 00000464. |
35. | Rosa RH Jr, Davis JL, Eifrig CW. Clinicopathologic reports, case reports, and small case series: clinicopathologic correlation of idiopathic polypoidal choroidal vasculopathy[J]. Arch Ophthalmol, 2002, 120(4): 502-508. DOI: 10.1001/archopht.120.4.502. |
36. | Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimer's disease[J]. Prog Retin Eye Res, 2011, 30(4): 217-238. DOI: 10.1016/j.preteyeres.2011.02.004. |
37. | Dentchev T, Milam AH, Lee VM, et al. Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas[J]. Mol Vis, 2003, 9: 184-190. |
38. | Johnson LV, Leitner WP, Rivest AJ, et al. The Alzheimer's a beta -peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration[J]. Proc Natl Acad Sci USA, 2002, 99(18): 11830-11835. DOI: 10.1073/pnas.192203399. |
39. | Bernstein AM, Ritch R, Wolosin JM. Exfoliation syndrome: a disease of autophagy and LOXL1 proteopathy[J]. J Glaucoma, 2018, 27(Suppl 1): S44-53. DOI: 10.1097/IJG.0000000000000919. |
40. | Bernstein AM, Ritch R, Wolosin JM. LOXL1 folding in exfoliation glaucoma[J]. Adv Protein Chem Struct Biol, 2019, 118: 273-288. DOI: 10.1016/bs.apcsb.2019.09.005. |
41. | Zhao Y, Bhattacharjee S, Jones BM, et al. Beta-amyloid precursor protein (βAPP) processing in Alzheimer's disease (AD) and age-related macular degeneration (AMD)[J]. Mol Neurobiol, 2015, 52(1): 533-544. DOI: 10.1007/s12035-014-8886-3. |
42. | Ma Z, Han L, Wang C, et al. Autologous transplantation of retinal pigment epithelium-Bruch's membrane complex for hemorrhagic age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2009, 50(6): 2975-2981. DOI: 10.1167/iovs.08-2573. |
43. | Liu G, Han L, Lu Y, et al. Clinicopathological study of the polypoidal lesions of polypoidal choroidal vasculopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(7): 2369-2377. DOI: 10.1007/s00417-021-05525-1. |
44. | Ritch R, Schlötzer-Schrehardt U. Exfoliation syndrome[J]. Surv Ophthalmol, 2001, 45(4): 265-315. DOI: 10.1016/s0039-6257(00)00196-x. |
45. | Golestaneh N, Chu Y, Xiao YY, et al. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration[J/OL]. Cell Death Dis, 2017, 8(1): e2537[2017-01-05]. https://pubmed.ncbi.nlm.nih.gov/28055007/. DOI: 10.1038/cddis.2016.453. |
46. | Kaarniranta K, Hyttinen J, Ryhanen T, et al. Mechanisms of protein aggregation in the retinal pigment epithelial cells[J]. Front Biosci (Elite Ed), 2010, 2(4): 1374-1384. DOI: 10.2741/e198. |
47. | Guha S, Liu J, Baltazar G, et al. Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented epithelial cells[J]. Adv Exp Med Biol, 2014, 801: 105-111. DOI: 10.1007/978-1-4614-3209-8_14. |
48. | Nizynski B, Dzwolak W, Nieznanski K. Amyloidogenesis of Tau protein[J]. Protein Sci, 2017, 26(11): 2126-2150. DOI: 10.1002/pro.3275. |
49. | Schlötzer-Schrehardt U, von der Mark K, Sakai LY, et al. Increased extracellular deposition of fibrillin-containing fibrils in pseudoexfoliation syndrome[J]. Invest Ophthalmol Vis Sci, 1997, 38(5): 970-984. |
50. | Schlötzer-Schrehardt U, Dörfler S, Naumann GO. Immunohistochemical localization of basement membrane components in pseudoexfoliation material of the lens capsule[J]. Curr Eye Res, 1992, 11(4): 343-355. DOI: 10.3109/02713689 209001788. |
51. | Koronyo Y, Biggs D, Barron E, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer's disease[J/OL]. JCI Insight, 2017, 2(16): e93621[2017-08-17]. https://pubmed.ncbi.nlm.nih.gov/28814675/. DOI: 10.1172/jci.insight.93621. |
52. | Hadoux X, Hui F, Lim JKH, et al. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer's disease[J]. Nat Commun, 2019, 10(1): 4227. DOI: 10.1038/s41467-019-12242-1. |
53. | Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease[J]. Proc Natl Acad Sci USA, 1986, 83(11): 4044-4048. DOI: 10.1073/pnas.83.11.4044. |
- 1. Yannuzzi LA. Idiopathic polypoidal choroidal vasculopathy[C]. Macula Society Meeting. Miami, FL, 1982.
- 2. Yannuzzi LA, Sorenson J, Spaide RF, et al. Idiopathic polypoidal choroidal vasculopathy (IPCV)[J]. Retina, 1990, 10(1): 1-8. DOI: 10.1097/00006982-199010010-00001.
- 3. Cheung CMG, Lai TYY, Ruamviboonsuk P, et al. Polypoidal choroidal vasculopathy: definition, pathogenesis, diagnosis, and management[J]. Ophthalmology, 2018, 125(5): 708-724. DOI: 10.1016/j.ophtha.2017.11.019.
- 4. Freund KB, Zweifel SA, Engelbert M. Do we need a new classification for choroidal neovascularization in age-related macular degeneration?[J]. Retina, 2010, 30(9): 1333-1349. DOI: 10.1097/IAE.0b013e3181e7976b.
- 5. Gass JD. Biomicroscopic and histopathologic considerations regarding the feasibility of surgical excision of subfoveal neovascular membranes[J]. Am J Ophthalmol, 1994, 118(3): 285-298. DOI: 10.1016/S0002-9394(14)72951-4.
- 6. Yannuzzi LA, Negrão S, Iida T, et al. Retinal angiomatous proliferation in age-related macular degeneration[J]. Retina, 2001, 21(5): 416-434. DOI: 10.1097/00006982-200110000-00003.
- 7. Wang WL, Su X, Li X, er al. Global prevalence of age-related macular degenerationand disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J/OL]. Lancet Glob Health, 2014, 2(2): e106-e116[2014-01-03]. https://pubmed.ncbi.nlm.nih.gov/25104651/. DOI: 10.1016/S2214-109X(13)70145-1.
- 8. Liu Y, Wen F, Huang S, et al. Subtype lesions of neovascular age-related macular degeneration in chinese patients[J]. Graefe's Arch Clin Exp Ophthalmol, 2007, 245(10): 1441-1445. DOI: 10.1007/s00417-007-0575-8.
- 9. Chang YC, Wu WC. Polypoidal choroidal vasculopathy in Taiwanese patients[J]. Ophthalmic Surg Lasers Imaging, 2009, 40(6): 576-581. DOI: 10.3928/15428877-20091030-07.
- 10. Maruko I, Iida T, Saito M, et al. Clinical characteristics of exudative age-related macular degeneration in Japanese patients[J]. Am J Ophthalmol, 2007, 144(1): 15-22. DOI: 10.1016/j.ajo.2007.03.047.
- 11. Sawada T, Yasukawa T, Imaizumi H, er al. Subtype prevalence and baseline visual acuity by age in Japanese patients with neovascular age-related macular degeneration[J]. Jpn J Ophthalmol, 2023, 67(2): 149-155. DOI: 10.1007/s10384-023-00981-0.
- 12. Byeon SH, Lee SC, Oh HS, et al. Incidence and clinical patterns of polypoidal choroidalvasculopathy in Korean patients[J]. Jpn J Ophthalmol, 2008, 52(1): 57-62. DOI: 10.1007/s10384-007-0498-2.
- 13. Dat DT, Hien NDTN, Quan NN, et al. Current trends in clinical characteristics, diagnosis, and treatment of polypoidal choroidal vasculopathy: a perspective from vietnam[J]. J Clin Med, 2022, 11(16): 4678. DOI: 10.3390/jcm11164678.
- 14. Kumar M, Moptom SE, Sen P, et al. Prevalence of polypoidal choroidal vasculopathy in Indian population: risk factors, clinical and imaging characteristics[J/OL]. PLoS One, 2020, 15(4): e0231901[2020-04-28]. https://pubmed.ncbi.nlm.nih.gov/32343707/. DOI: 10.1371/journal.pone.0231901.
- 15. Cheung CMG, Lai TYY, Teo K, et al. Polypoidal choroidal vasculopathy: consensus nomenclature and non-indocyanine green angiograph diagnostic criteriafrom the Asia-Pacific Ocular Imaging Society PCV Workgroup[J]. Ophthalmology, 2021, 128(3): 443-452. DOI: 10.1016/j.ophtha.2020.08.006.
- 16. Chang TS, Freund KB, de la Cruz Z, et al. Clinicopathologic correlation of choroidal neovascularization demonstrated by indocyanine green angiography in a patient with retention of good vision for almost four years[J]. Retina, 1994, 14(2): 114-124. DOI: 10.1097/00006982-199414020-00004.
- 17. Gehrs KM, Heriot WJ, de Juan E Jr. Transmission electron microscopic study of a subretinal choroidal neovascular membrane due to age-related macular degeneration[J]. Arch Ophthalmol, 1992, 110(6): 833-837. DOI: 10.1001/archopht.1992.01080180105036.
- 18. Siedlecki J, Klaas JE, Keidel LF, et al. Progression of pachychoroid neovasculopathy into aneurysmal type 1 choroidal neovascularization or polypoidal choroidal vasculopathy[J]. Ophthalmol Retina, 2022, 6(9): 807-813. DOI: 10.1016/j.oret.2022.04.004.
- 19. Sayanagi K, Gomi F, Akiba M, et al. En-face high-penetrationoptical coherence tomography imaging in polypoidal choroidalvasculopathy[J]. Br J Ophthalmol, 2015, 99(1): 29-35. DOI: 10.1136/bjophthalmol-2013-304658.
- 20. Alasil T, Ferrara D, Adhi M, et al. En face imaging of thechoroid in polypoidal choroidal vasculopathy using sweptsource optical coherence tomography[J]. Am J Ophthalmol, 2015, 159(4): 634-643. DOI: 10.1016/j.ajo.2014.12.012.
- 21. Balaratnasingam C, Lee WK, Koizumi H, et al. Polypoidalchoroidal vasculopathy: a distinct disease or manifestation ofmany?[J]. Retina, 2016, 36(1): 1-8. DOI: 10.1097/IAE.0000000000000774.
- 22. Dansingani KK, Balaratnasingam C, Naysan J, et al. Enface imaging of pachychoroid spectrum disorders with sweptsource optical coherence tomography[J]. Retina, 2016, 36(3): 499-516. DOI: 10.1097/IAE.0000000000000742.
- 23. de Carlo TE, Kokame GT, Kaneko KN, et al. Sensitivityand specificity of detecting polypoidal choroidal vasculopathy with en face optical coherence tomography andoptical coherence tomography angiography[J]. Retina, 2019, 39(7): 1343-1352. DOI: 10.1097/IAE.0000000000002139.
- 24. Kameda T, Tsujikawa A, Otani A, et al. Polypoidal choroidal vasculopathy examined with en face optical coherence tomography[J]. Clin Exp Ophthalmol, 2007, 35(7): 596-601. DOI: 10.1111/j.1442-9071.2007.01554.x.
- 25. Saito M, Iida T, Nagayama D. Cross-sectional and en faceoptical coherence tomographic features of polypoidal choroidal vasculopathy[J]. Retina, 2008, 28(3): 459-464. DOI: 10.1097/IAE.0b013e318156db60.
- 26. Killingsworth MC, Sarks JP, Sarks SH. Macrophages related to Bruch's membrane in age-related macular degeneration[J]. Eye (Lond), 1990, 4(Pt4): 613-621. DOI: 10.1038/eye.1990.86.
- 27. Sarks S, Cherepanoff S, Killingsworth M, et al. Relationship of basal laminar deposit and membranous debris to the clinical presentation of early age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2007, 48(3): 968-977. DOI: 10.1167/iovs.06-0443.
- 28. Green WR, Enger C. Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lecture[J]. Ophthalmology, 1993, 100(10): 1519-1535. DOI: 10.1016/s0161-6420 (93)31466-1.
- 29. Bressler SB, Bressler NM, Sarks SH, et al. Age-related macular degeneration: nonneovascular early AMD, intermediate AMD, and geographic atrophy[M]//Ryan SJ. Retina. St. Louis, MO: Mosby, 2006: 1041-1074.
- 30. Reale E, Groos S, Eckardt U, et al. New components of 'basal laminar deposits' in age-related macular degeneration[J]. Cells Tissues Organs, 2009, 190(3): 170-181. DOI: 10.1159/000187632.
- 31. Green WR. Histopathology of age-related macular degeneration[J]. Mol Vis, 1999, 5: 27.
- 32. Sura AA, Chen L, Messinger JD, et al. Measuring the contributions of basal laminar deposit and Bruch's membrane in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2020, 61(13): 19. DOI: 10.1167/iovs.61.13.19.
- 33. Okubo A, Sameshima M, Uemura A, et al. Clinicopathological correlation of polypoidal choroidal vasculopathy revealed by ultrastructural study[J]. Br J Ophthalmol, 2002, 86(10): 1093-1098. DOI: 10.1136/bjo.86.10.1093.
- 34. Moussa K, Bloomer MM, Schwartz DM, et al. Polypoidal choroidal vasculopathy: a clinicopathologic study[J]. Retin Cases Brief Rep, 2017, 11(Suppl 1): S128-131. DOI: 10.1097/ICB.00000000 00000464.
- 35. Rosa RH Jr, Davis JL, Eifrig CW. Clinicopathologic reports, case reports, and small case series: clinicopathologic correlation of idiopathic polypoidal choroidal vasculopathy[J]. Arch Ophthalmol, 2002, 120(4): 502-508. DOI: 10.1001/archopht.120.4.502.
- 36. Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimer's disease[J]. Prog Retin Eye Res, 2011, 30(4): 217-238. DOI: 10.1016/j.preteyeres.2011.02.004.
- 37. Dentchev T, Milam AH, Lee VM, et al. Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas[J]. Mol Vis, 2003, 9: 184-190.
- 38. Johnson LV, Leitner WP, Rivest AJ, et al. The Alzheimer's a beta -peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration[J]. Proc Natl Acad Sci USA, 2002, 99(18): 11830-11835. DOI: 10.1073/pnas.192203399.
- 39. Bernstein AM, Ritch R, Wolosin JM. Exfoliation syndrome: a disease of autophagy and LOXL1 proteopathy[J]. J Glaucoma, 2018, 27(Suppl 1): S44-53. DOI: 10.1097/IJG.0000000000000919.
- 40. Bernstein AM, Ritch R, Wolosin JM. LOXL1 folding in exfoliation glaucoma[J]. Adv Protein Chem Struct Biol, 2019, 118: 273-288. DOI: 10.1016/bs.apcsb.2019.09.005.
- 41. Zhao Y, Bhattacharjee S, Jones BM, et al. Beta-amyloid precursor protein (βAPP) processing in Alzheimer's disease (AD) and age-related macular degeneration (AMD)[J]. Mol Neurobiol, 2015, 52(1): 533-544. DOI: 10.1007/s12035-014-8886-3.
- 42. Ma Z, Han L, Wang C, et al. Autologous transplantation of retinal pigment epithelium-Bruch's membrane complex for hemorrhagic age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2009, 50(6): 2975-2981. DOI: 10.1167/iovs.08-2573.
- 43. Liu G, Han L, Lu Y, et al. Clinicopathological study of the polypoidal lesions of polypoidal choroidal vasculopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(7): 2369-2377. DOI: 10.1007/s00417-021-05525-1.
- 44. Ritch R, Schlötzer-Schrehardt U. Exfoliation syndrome[J]. Surv Ophthalmol, 2001, 45(4): 265-315. DOI: 10.1016/s0039-6257(00)00196-x.
- 45. Golestaneh N, Chu Y, Xiao YY, et al. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration[J/OL]. Cell Death Dis, 2017, 8(1): e2537[2017-01-05]. https://pubmed.ncbi.nlm.nih.gov/28055007/. DOI: 10.1038/cddis.2016.453.
- 46. Kaarniranta K, Hyttinen J, Ryhanen T, et al. Mechanisms of protein aggregation in the retinal pigment epithelial cells[J]. Front Biosci (Elite Ed), 2010, 2(4): 1374-1384. DOI: 10.2741/e198.
- 47. Guha S, Liu J, Baltazar G, et al. Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented epithelial cells[J]. Adv Exp Med Biol, 2014, 801: 105-111. DOI: 10.1007/978-1-4614-3209-8_14.
- 48. Nizynski B, Dzwolak W, Nieznanski K. Amyloidogenesis of Tau protein[J]. Protein Sci, 2017, 26(11): 2126-2150. DOI: 10.1002/pro.3275.
- 49. Schlötzer-Schrehardt U, von der Mark K, Sakai LY, et al. Increased extracellular deposition of fibrillin-containing fibrils in pseudoexfoliation syndrome[J]. Invest Ophthalmol Vis Sci, 1997, 38(5): 970-984.
- 50. Schlötzer-Schrehardt U, Dörfler S, Naumann GO. Immunohistochemical localization of basement membrane components in pseudoexfoliation material of the lens capsule[J]. Curr Eye Res, 1992, 11(4): 343-355. DOI: 10.3109/02713689 209001788.
- 51. Koronyo Y, Biggs D, Barron E, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer's disease[J/OL]. JCI Insight, 2017, 2(16): e93621[2017-08-17]. https://pubmed.ncbi.nlm.nih.gov/28814675/. DOI: 10.1172/jci.insight.93621.
- 52. Hadoux X, Hui F, Lim JKH, et al. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer's disease[J]. Nat Commun, 2019, 10(1): 4227. DOI: 10.1038/s41467-019-12242-1.
- 53. Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease[J]. Proc Natl Acad Sci USA, 1986, 83(11): 4044-4048. DOI: 10.1073/pnas.83.11.4044.