1. |
Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186. DOI: 10.1016/j.preteyeres.2015.08.001.
|
2. |
Arrigo A, Aragona E, Bandello F. VEGF-targeting drugs for the treatment of retinal neovascularization in diabetic retinopathy[J]. Ann Med, 2022, 54(1): 1089-1111. DOI: 10.1080/07853890.2022.2064541.
|
3. |
Zhang J, Zhang J, Zhang C, et al. Diabetic macular edema: current understanding, molecular mechanisms and therapeutic implications[J]. Cells, 2022, 11(21): 3362. DOI: 10.3390/cells11213362.
|
4. |
Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy[J/OL]. Front Immunol, 2020, 11: 583687[2020-11-06]. https://pubmed.ncbi.nlm.nih.gov/33240272/. DOI: 10.3389/fimmu.2020.583687.
|
5. |
Semeraro F, Morescalchi F, Cancarini A, et al. Diabetic retinopathy, a vascular and inflammatory disease: therapeutic implications[J]. Diabetes Metab, 2019, 45(6): 517-527. DOI: 10.1016/j.diabet.2019.04.002.
|
6. |
Kaštelan S, Orešković I, Bišćan F, et al. Inflammatory and angiogenic biomarkers in diabetic retinopathy[J/OL]. Biochem Med (Zagreb), 2020, 30(3): 030502[2020-10-15]. https://pubmed.ncbi.nlm.nih.gov/32774120/. DOI: 10.11613/bm.2020.030502.
|
7. |
Liu Y, Li L, Pan N, et al. TNF-α released from retinal Müller cells aggravates retinal pigment epithelium cell apoptosis by upregulating mitophagy during diabetic retinopathy[J]. Biochem Biophys Res Commun, 2021, 561: 143-150. DOI: 10.1016/j.bbrc.2021.05.027.
|
8. |
Pan WW, Lin F, Fort PE. The innate immune system in diabetic retinopathy[J/OL]. Prog Retin Eye Res, 2021, 84: 100940[2021-01-08]. https://pubmed.ncbi.nlm.nih.gov/33429059/. DOI: 10.1016/j.preteyeres.2021.100940.
|
9. |
Chung YR, Kim YH, Ha SJ, et al. Role of inflammation in classification of diabetic macular edema by optical coherence tomography[J/OL]. J Diabetes Res, 2019, 2019: 8164250[2019-12-20]. https://pubmed.ncbi.nlm.nih.gov/31930145/. DOI: 10.1155/2019/8164250.
|
10. |
Liang Y, Yan B, Meng Z, et al. Comparison of inflammatory and angiogenic factors in the aqueous humor of vitrectomized and non-vitrectomized eyes in diabetic macular edema patients[J/OL]. Front Med (Lausanne), 2021, 8: 699254[2021-09-08]. https://pubmed.ncbi.nlm.nih.gov/34568366/. DOI: 10.3389/fmed.2021.699254.
|
11. |
Chen HJ, Ma ZZ, Li Y, et al. Change of vascular endothelial growth factor levels following vitrectomy in eyes with proliferative diabetic retinopathy[J/OL]. J Ophthalmol, 2019, 2019: 6764932[2019-10-23]. https://pubmed.ncbi.nlm.nih.gov/31772768/. DOI: 10.1155/2019/6764932.
|
12. |
Boyer DS, Yoon YH, Belfort R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema[J]. Ophthalmology, 2014, 121(10): 1904-1914. DOI: 10.1016/j.ophtha.2014.04.024.
|
13. |
Rosenblatt A, Udaondo P, Cunha-Vaz J, et al. A collaborative retrospective study on the efficacy and safety of intravitreal dexamethasone implant (Ozurdex) in patients with diabetic macular edema: the European DME registry study[J]. Ophthalmology, 2020, 127(3): 377-393. DOI: 10.1016/j.ophtha.2019.10.005.
|
14. |
Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic retinopathy preferred practice pattern®[J]. Ophthalmology, 2020, 127(1): P66-145. DOI: 10.1016/j.ophtha.2019.09.025.
|
15. |
Ip MS, Zhang J, Ehrlich JS. The clinical importance of changes in diabetic retinopathy severity score[J]. Ophthalmology, 2017, 124(5): 596-603. DOI: 10.1016/j.ophtha.2017.01.003.
|
16. |
Everett LA, Paulus YM. Laser therapy in the treatment of diabetic retinopathy and diabetic macular edema[J]. Curr Diab Rep, 2021, 21(9): 35. DOI: 10.1007/s11892-021-01403-6.
|
17. |
Chatziralli I, Loewenstein A. Intravitreal anti-vascular endothelial growth factor agents for the treatment of diabetic retinopathy: a review of the literature[J]. Pharmaceutics, 2021, 13(8): 1137. DOI: 10.3390/pharmaceutics13081137.
|
18. |
Xu Y, Xie C, Fang Y, et al. Optimal timing of preoperative intravitreal anti-VEGF injection for proliferative diabetic retinopathy patients[J]. Int J Ophthalmol, 2022, 15(10): 1619-1626. DOI: 10.18240/ijo.2022.10.09.
|
19. |
Prince J, Kumar D, Ghosh A, et al. Surgical management of diabetic macular edema[J]. Curr Diab Rep, 2023, 23(6): 119-125. DOI: 10.1007/s11892-023-01505-3.
|
20. |
Ding Y, Su N, Luan J, et al. Effect of intravitreal Conbercept injection on complications of pars plana vitrectomy in patients with proliferative diabetic retinopathy[J]. J Pers Med, 2023, 13(4): 572. DOI: 10.3390/jpm13040572.
|
21. |
Ozer F, Tokuc EO, Albayrak MGB, et al. Comparison of before versus after intravitreal bevacizumab injection, growth factor levels and fibrotic markers in vitreous samples from patients with proliferative diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(6): 1899-1906. DOI: 10.1007/s00417-021-05515-3.
|
22. |
Pande GS, Tidake P. Laser treatment modalities for diabetic retinopathy[J/OL]. Cureus, 2022, 14(10): e30024[2022-10-07]. https://pubmed.ncbi.nlm.nih.gov/36348830/. DOI: 10.7759/cureus.30024.
|
23. |
Lima-Fontes M, Leuzinger-Dias M, Barros-Pereira R, et al. Intravitreal Fluocinolone acetonide implant (FAc, 0.19 mg, ILUVIEN®) in the treatment of patients with recurrent cystoid macular edema after pars plana vitrectomy[J]. Ophthalmol Ther, 2023, 12(1): 377-388. DOI: 10.1007/s40123-022-00613-9.
|
24. |
Rodríguez ML, Pérez S, Mena-Mollá S, et al. Oxidative stress and microvascular alterations in diabetic retinopathy: future therapies[J/OL]. Oxid Med Cell Longev, 2019, 2019: 4940825[2019-11-11]. https://pubmed.ncbi.nlm.nih.gov/31814880/. DOI: 10.1155/2019/4940825.
|
25. |
Figueras-Roca M, Sala-Puigdollers A, Zarranz-Ventura J, et al. Anatomic response to intravitreal Dexamethasone implant and baseline aqueous humor cytokine levels in diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2019, 60(5): 1336-1343. DOI: 10.1167/iovs.18-26215.
|
26. |
Munk MR, Somfai GM, de Smet MD, et al. The role of intravitreal corticosteroids in the treatment of DME: predictive OCT biomarkers[J/OL]. Int J Mol Sci, 2022, 23(14): 7585[2022-07-08]. https://pubmed.ncbi.nlm.nih.gov/35886930/. DOI: 10.3390/ijms23147585.
|
27. |
Chang-Lin JE, Burke JA, Peng Q, et al. Pharmacokinetics of a sustained-release dexamethasone intravitreal implant in vitrectomized and nonvitrectomized eyes[J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4605-4609. DOI: 10.1167/iovs.10-6387.
|
28. |
Iglicki M, Busch C, Lanzetta P, et al. Vitrectomized vs non-vitrectomized eyes in DEX implant treatment for DMO-is there any difference? The VITDEX study[J]. Eye (Lond), 2023, 37(2): 280-284. DOI: 10.1038/s41433-022-01931-9.
|
29. |
Iglicki M, Zur D, Busch C, et al. Progression of diabetic retinopathy severity after treatment with dexamethasone implant: a 24-month cohort study the 'DR-Pro-DEX Study'[J]. Acta Diabetol, 2018, 55(6): 541-547. DOI: 10.1007/s00592-018-1117-z.
|
30. |
Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP, et al. Randomized trial evaluating Ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema[J]. Ophthalmology, 2010, 117(6): 1064-1077. DOI: 10.1016/j.ophtha.2010.02.031.
|
31. |
Thorne JE, Sugar EA, Holbrook JT, et al. Periocular Triamcinolone vs. intravitreal Triamcinolone vs. intravitreal Dexamethasone implant for the treatment of uveitic macular edema: The PeriOcular vs. INTravitreal corticosteroids for uveitic macular edema (POINT) trial[J]. Ophthalmology, 2019, 126(2): 283-295. DOI: 10.1016/j.ophtha.2018.08.021.
|