1. |
Sabri K, Ells AL, Lee EY, et al. Retinopathy of prematurity: a global perspective and recent developments[J/OL]. Pediatrics, 2022, 150(3): e2021053924[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/35948728/. DOI: 10.1542/peds.2021-053924.
|
2. |
Longchamp A, Mirabella T, Arduini A, et al. Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H(2)S production[J]. Cell, 2018, 173(1): 117-129. DOI: 10.1016/j.cell.2018.03.001.
|
3. |
Li X, Kumar A, Carmeliet P. Metabolic pathways fueling the endothelial cell drive[J]. Annu Rev Physiol, 2019, 81: 483-503. DOI: 10.1146/annurev-physiol-020518-114731.
|
4. |
Oberkersch RE, Santoro MM. Role of amino acid metabolism in angiogenesis[J]. Vasc Pharm, 2019, 112: 17-23. DOI: 10.1016/j.vph.2018.11.001.
|
5. |
Bloomfield FH, Jiang Y, Harding JE, et al. Early amino acids in extremely preterm infants and neurodisability at 2 years[J]. N Engl J Med, 2022, 387(18): 1661-1672. DOI: 10.1056/NEJMoa2204886.
|
6. |
International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited[J]. Arch Ophthalmol, 2005, 123(7): 991-999. DOI: 10.1001/archopht.123.7.991.
|
7. |
Palmer EA. Results of U. S. randomized clinical trial of cryotherapy for ROP (CRYO-ROP)[J]. Doc Ophthalmol, 1990, 74(3): 245-251. DOI: 10.1007/bf02482615.
|
8. |
Dwivedi A, Dwivedi D, Lakhtakia S, et al. Prevalence, risk factors and pattern of severe retinopathy of prematurity in eastern madhya pradesh[J]. Indian J Ophthalmol, 2019, 67(6): 819-923. DOI: 10.4103/ijo.IJO_1789_18.
|
9. |
Good WV, Early Treatment for Retinopathy of Prematurity Cooperative Group. Final results of the early treatment for retinopathy of prematurity (ETROP) randomized trial[J]. Trans Am Ophthalmol Soc, 2004, 102: 233-248.
|
10. |
中华医学会儿科学分会眼科学组. 早产儿视网膜病变治疗规范专家共识[J]. 中华眼底病杂志, 2022, 38(1): 10-13. DOI: 10.3760/cma.j.cn511434-20211119-00647.Ophthalmology Group of Pediatrics Society of Chinese Medical Association. Expert consensus on the treatment of retinopathy of prematurity[J]. Chin J Ocul Fundus Dis, 2022, 38(1): 10-13. DOI: 10.3760/cma.j.cn511434-20211119-00647.
|
11. |
Ye C, Wu J, Reiss JD, et al. Progressive metabolic abnormalities associated with the development of neonatal bronchopulmonary dysplasia[J]. Nutrients, 2022, 14(17): 3547. DOI: 10.3390/nu14173547.
|
12. |
Sinclair TJ, Ye C, Chen Y, et al. Progressive metabolic dysfunction and nutritional variability precedes necrotizing enterocolitis[J]. Nutrients, 2020, 12(5): 1275. DOI: 10.3390/nu12051275.
|
13. |
Teoh ST, Leimanis-Laurens ML, Comstock SS, et al. Combined plasma and urinary metabolomics uncover metabolic perturbations associated with severe respiratory syncytial viral infection and future development of asthma in infant patients[J]. Metabolites, 2022, 12(2): 178. DOI: 10.3390/metabo12020178.
|
14. |
李思涛, 郝虎, 刘梦娴, 等. 基于液相色谱-串联质谱联用技术的支气管肺发育不良患儿血代谢产物分析[J]. 中华围产医学杂志, 2019, 22(3): 173-179. DOI: 10.3760/cma.j.issn.1007-9408.2019.03.005.Li ST, Hao H, Liu MX, et al. Analysis of blood metabolites in children with bronchopulmonary dysplasia based on liquid chromatography-tandem mass spectrometry[J]. Chin J Perinat Med, 2019, 22(3): 173-179. DOI: 10.3760/cma.j.issn.1007-9408.2019.03.005.
|
15. |
Harman JC, Pivodic A, Nilsson AK, et al. Postnatal hyperglycemia alters amino acid profile in retinas (model of Phase I ROP)[J/OL]. iScience, 2023, 26(10): 108021[2023-09-22]. https://pubmed.ncbi.nlm.nih.gov/37841591/. DOI: 10.1016/j.isci.2023.108021.
|
16. |
Zhang X, Xia M, Wu Y, et al. Branched-chain amino acids metabolism and their roles in retinopathy: from relevance to mechanism [J]. Nutrients, 2023, 15(9). DOI:10.3390/nu15092161.
|
17. |
Ozcan Y, Huseyin G, Sonmez K. Evaluation of plasma amino acid levels in preterm infants and their potential correlation with retinopathy of prematurity[J/OL]. J Ophthalmol, 2020, 2020: 8026547[2020-11-10]. https://europepmc.org/article/MED/33489343. DOI:10.1155/2020/8026547.
|
18. |
Sedel F, Challe G, Mayer JM, et al. Thiamine responsive pyruvate dehydrogenase deficiency in an adult with peripheral neuropathy and optic neuropathy[J]. J Neurol Neurosurg Psychiatry, 2008, 79(7): 846-847. DOI: 10.1136/jnnp.2007.136630.
|
19. |
Li G, Lin J, Zhang C, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease[J/OL]. Gut Microbes, 2021, 13(1): 1968257[2021-01-01]. https://pubmed.ncbi.nlm.nih.gov/34494943/. DOI: 10.1080/19490976.2021.1968257.
|
20. |
Zhang L, Liu C, Jiang Q, et al. Butyrate in energy metabolism: there is still more to learn[J]. Trends Endocrinol Metab, 2021, 32(3): 159-169. DOI: 10.1016/j.tem.2020.12.003.
|
21. |
Islinger M, Voelkl A, Fahimi HD, et al. The peroxisome: an update on mysteries 2.0[J]. Histochem Cell Biol, 2018, 150(5): 443-471. DOI: 10.1007/s00418-018-1722-5.
|
22. |
Ding L, Sun W, Balaz M, et al. Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis[J]. Nat Metab, 2021, 3(12): 1648-1661. DOI: 10.1038/s42255-021-00489-2.
|
23. |
Cohen LH, Noell WK. Glucose catabolism of rabbit retina before and after development of visual function[J]. J Neurochem, 1960, 5: 253-276. DOI: 10.1111/j.1471-4159.1960.tb13363.x.
|
24. |
Chinchore Y, Begaj T, Wu D, et al. Glycolytic reliance promotes anabolism in photoreceptors[J/OL]. Elife, 2017, 6: e25946. https://pubmed.ncbi.nlm.nih.gov/28598329/. DOI: 10.7554/eLife.25946.
|
25. |
Wong BW, Marsch E, Treps L, et al. Endothelial cell metabolism in health and disease: impact of hypoxia[J]. Embo J, 2017, 36(15): 2187-2203. DOI: 10.15252/embj.201696150.
|
26. |
Solmonson A, DeBerardinis RJ. Lipoic acid metabolism and mitochondrial redox regulation[J]. J Biol Chem, 2018, 293(20): 7522-7530. DOI: 10.1074/jbc.TM117.000259.
|
27. |
Habarou F, Hamel Y, Haack TB, et al. Biallelic mutations in LIPT2 cause a mitochondrial lipoylation defect associated with severe neonatal encephalopathy[J]. Am J Hum Genet, 2017, 101(2): 283-290. DOI: 10.1016/j.ajhg.2017.07.001.
|
28. |
Zhou Y, Xu Y, Zhang X, et al. Plasma levels of amino acids and derivatives in retinopathy of prematurity[J]. Int J Med Sci, 2021, 18(15): 3581-3587. DOI: 10.7150/ijms.63603.
|
29. |
Paris LP, Johnson CH, Aguilar E, et al. Global metabolomics reveals metabolic dysregulation in ischemic retinopathy[J]. Metabolomics, 2016, 12: 15. DOI: 10.1007/s11306-015-0877-5.
|
30. |
Low SWY, Connor TB, Kassem IS, et al. Small leucine-rich proteoglycans (SLRPs) in the retina[J/OL]. Int J Mol Sci, 2021, 22(14): 7293[2021-07-07]. https://pubmed.ncbi.nlm.nih.gov/34298915/. DOI: 10.3390/ijms22147293.
|
31. |
Skondra D, Rodriguez SH, Sharma A, et al. The early gut microbiome could protect against severe retinopathy of prematurity[J]. J Aapos, 2020, 24(4): 236-238. DOI: 10.1016/j.jaapos.2020.03.010.
|