1. |
Akyol E, Hagag AM, Sivaprasad S, et al. Adaptive optics: principles and applications in ophthalmology[J]. Eye (Lond), 2021, 35(1): 244-264. DOI: 10.1038/s41433-020-01286-z.
|
2. |
Wongwai J, Buranasiri P, Pasupa K, et al. Analysis of volumetric 3D reconstruction of lamina cribrosa images from swept-source optical coherence tomography in glaucomatous and healthy subjects[J]. Biomed Opt Express, 2023, 14(9): 4627-4643. DOI: 10.1364/BOE.497242.
|
3. |
张影, 张荟颖, 姚进. 基于自适应光学的视网膜成像技术应用进展[J]. 国际眼科杂志, 2023, 23(12): 1978-1982. DOI: 10.3980/j.issn.1672-5123.2023.12.08.Zhang Y, Zhang HY, Yao J. Advancements in the application of adaptive optics-based retinal imaging technology[J]. Int Rev Ophthalmol, 2023, 23(12): 1978-1982. DOI: 10.3980/j.issn.1672-5123.2023.12.08.
|
4. |
Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. J Opt Soc Am A Opt Image Sci Vis, 1997, 14(11): 2884-2892. DOI: 10.1364/josaa.14.002884.
|
5. |
Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye[J]. Nature, 1999, 397(6719): 520-522. DOI: 10.1038/17383.
|
6. |
Warner RL, Gast TJ, Sapoznik KA, et al. Measuring temporal and spatial variability of red blood cell velocity in human retinal vessels[J]. Invest Ophthalmol Vis Sci, 2021, 62(14): 29-37. DOI: 10.1167/iovs.62.14.29.
|
7. |
Cooper RF, Wilk MA, Tarima S, et al. Evaluating descriptive metrics of the human cone mosaic[J]. Invest Ophthalmol Vis Sci, 2016, 57(7): 2992-3001. DOI: 10.1167/iovs.16-19072.
|
8. |
Zhang B, Li N, Kang J, et al. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update[J]. Int J Ophthalmol, 2017, 10(11): 1751-1758. DOI: 10.18240/ijo.2017.11.18.
|
9. |
Jonas JB, Wang YX, Zhang Q, et al. Macular bruch's membrane length and axial length. The Beijing Eye Study[J/OL]. PLoS One, 2015, 10(8): e0136833[2015-08-28]. https://pubmed.ncbi.nlm.nih.gov/26317992/. DOI: 10.1371/journal.pone.0136833.
|
10. |
Chui TY, Song H, Clark CA, et al. Cone photoreceptor packing density and the outer nuclear layer thickness in healthy subjects[J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3545-3553. DOI: 10.1167/iovs.11-8694.
|
11. |
Jonas JB, Schneider U, Naumann GO. Count and density of human retinal photoreceptors[J]. Graefe's Arch Clin Exp Ophthalmol, 1992, 230(6): 505-510. DOI: 10.1007/BF00181769.
|
12. |
Dubra A, Sulai Y, Norris JL, et al. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope[J]. Biomed Opt Express, 2011, 2(7): 1864-1876. DOI: 10.1364/BOE.2.001864.
|
13. |
Merino D, Duncan JL, Tiruveedhula P, et al. Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope[J]. Biomed Opt Express, 2011, 2(8): 2189-2201. DOI: 10.1364/BOE.2.002189.
|
14. |
Roorda A, Zhang Y, Duncan JL. High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease[J]. Invest Ophthalmol Vis Sci, 2007, 48(5): 2297-2303. DOI: 10.1167/iovs.06-1450.
|
15. |
Williams DR, Burns SA, Miller DT, et al. Evolution of adaptive optics retinal imaging[J]. Biomed Opt Express, 2023, 14(3): 1307-1338. DOI: 10.1364/BOE.485371.
|
16. |
Neriyanuri S, Bedggood P, Symons RCA, et al. Flow heterogeneity and factors contributing to the variability in retinal capillary blood flow[J]. Invest Ophthalmol Vis Sci, 2023, 64(10): 15-28. DOI: 10.1167/iovs.64.10.15.
|
17. |
Gu BY, Wang XL, Twa MD, et al. Noninvasive in vivo characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging[J]. Biomed Opt Express, 2018, 9(8): 3653-3677. DOI: 10.1364/BOE.9.003653.
|
18. |
Martin JA, Roorda A. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity[J]. Ophthalmology, 2005, 112(12): 2219-2224. DOI: 10.1016/j.ophtha.2005.06.033.
|
19. |
Joseph A, Chu CJ, Feng GP, et al. Label-free imaging of immune cell dynamics in the living retina using adaptive optics[J/OL]. Elife, 2020, 9(1): e60547[2020-10-14]. https://pubmed.ncbi.nlm.nih.gov/33052099/. DOI: 10.7554/eLife.60547.
|
20. |
Mo S, Krawitz B, Efstathiadis E, et al. Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 130-140. DOI: 10.1167/iovs.15-18932.
|
21. |
Pircher M, Zawadzki RJ. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging[J]. Biomed Opt Express, 2017, 8(5): 2536-2562. DOI: 10.1364/BOE.8.002536.
|
22. |
Corless JM. Lamellar structure of bleached and unbleached rod photoreceptor membranes[J]. Nature, 1972, 237(5352): 229-231. DOI: 10.1038/237229a0.
|
23. |
Reumueller A, Wassermann L, Salas M, et al. Three-dimensional assessment of para- and perifoveal photoreceptor densities and the impact of meridians and age in healthy eyes with adaptive-optics optical coherence tomography (AO-OCT)[J]. Opt Express, 2020, 28(24): 36723-36739. DOI: 10.1364/OE.409076.
|
24. |
Pandiyan VP, Schleufer S, Slezak E, et al. Characterizing cone spectral classification by optoretinography[J]. Biomed Opt Express, 2022, 13(12): 6574-6594. DOI: 10.1364/BOE.473608.
|
25. |
Lassoued A, Zhang FR, Kurokawa K, et al. Cone photoreceptor dysfunction in retinitis pigmentosa revealed by optoretinography[J/OL]. Proc Natl Acad Sci USA, 2021, 118(47): e2107444118[2021-11-23]. https://pubmed.ncbi.nlm.nih.gov/34795055/. DOI: 10.1073/pnas.2107444118.
|
26. |
Song HX, Rossi EA, Yang Q, et al. High-resolution adaptive optics in vivo autofluorescence imaging in stargardt disease[J]. JAMA Ophthalmol, 2019, 137(6): 603-609. DOI: 10.1001/jamaophthalmol.2019.0299.
|
27. |
Palejwala NV, Gale MJ, Clark RF, et al. Insights into autosomal dominant stargardt-like macular dystrophy through multimodality diagnostics imaging[J]. Retina, 2016, 36(1): 119-130. DOI: 10.1097/IAE.0000000000000659.
|
28. |
Nakanishi A, Ueno S, Hayashi T, et al. Changes of cone photoreceptor mosaic in autosomal recessive bestrophinopathy[J]. Retina, 2020, 40(1): 181-186. DOI: 10.1097/IAE.0000000000 002363.
|
29. |
Verbakel SK, van Huet RAC, Boon CJF, et al. Non-syndromic retinitis pigmentosa[J]. Prog Retin Eye Res, 2018, 66(1): 157-186. DOI: 10.1016/j.preteyeres.2018.03.005.
|
30. |
Nakatake S, Murakami Y, Funatsu J, et al. Early detection of cone photoreceptor cell loss in retinitis pigmentosa using adaptive optics scanning laser ophthalmoscopy[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(6): 1169-1181. DOI: 10.1007/s00417-019-04307-0.
|
31. |
Ueda-Consolvo T, Ozaki H, Nakamura T, et al. The association between cone density and visual function in the macula of patients with retinitis pigmentosa[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(9): 1841-1846. DOI: 10.1007/s00417-019-04385-0.
|
32. |
Lin R, Shen MX, Pan D, et al. Relationship between cone loss and microvasculature change in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2019, 60(14): 4520-4531. DOI: 10.1167/iovs.19-27114.
|
33. |
Aleman TS, O'Neil EC, O'Connor K, et al. Bardet-Biedl syndrome-7 (BBS7) shows treatment potential and a cone-rod dystrophy phenotype that recapitulates the non-human primate model[J]. Ophthalmic Genet, 2021, 42(3): 252-265. DOI: 10.1080/13816810.2021.1888132.
|
34. |
Foote KG, De la Huerta I, Gustafson K, et al. Cone spacing correlates with retinal thickness and microperimetry in patients with inherited retinal degenerations[J]. Invest Ophthalmol Vis Sci, 2019, 60(4): 1234-1243. DOI: 10.1167/iovs.18-25688.
|
35. |
Foote KG, Roorda A, Duncan JL. Multimodal imaging in choroideremia[J]. Adv Exp Med Biol, 2019, 1185(1): 139-143. DOI: 10.1007/978-3-030-27378-1_23.
|
36. |
Abozaid MA, Langlo CS, Dubis AM, et al. Reliability and repeatability of cone density measurements in patients with congenital achromatopsia[J]. Adv Exp Med Biol, 2016, 854(1): 277-283. DOI: 10.1007/978-3-319-17121-0_37.
|
37. |
Lee DJ, Woertz EN, Visotcky A, et al. The henle fiber layer in albinism: comparison to normal and relationship to outer nuclear layer thickness and foveal cone density[J]. Invest Ophthalmol Vis Sci, 2018, 59(13): 5336-5348. DOI: 10.1167/iovs.18-24145.
|
38. |
Agrón E, Domalpally A, Cukras CA, et al. Reticular pseudodrusen: the third macular risk feature for progression to late age-related macular degeneration: age-related eye disease study 2 report 30[J]. Ophthalmology, 2022, 129(10): 1107-1119. DOI: 10.1016/j.ophtha.2022.05.021.
|
39. |
Rossi EA, Norberg N, Eandi C, et al. A new method for visualizing drusen and their progression in flood-illumination adaptive optics ophthalmoscopy[J]. Transl Vis Sci Technol, 2021, 10(14): 19-35. DOI: 10.1167/tvst.10.14.19.
|
40. |
Boretsky A, Khan F, Burnett G, et al. In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study[J]. Lasers Surg Med, 2012, 44(8): 603-610. DOI: 10.1002/lsm.22070.
|
41. |
Takagi S, Mandai M, Gocho K, et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration[J]. Ophthalmol Retina, 2019, 3(10): 850-859. DOI: 10.1016/j.oret.2019.04.021.
|
42. |
Sawides L, Sapoznik KA, de Castro A, et al. Alterations to the foveal cone mosaic of diabetic patients[J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3395-3403. DOI: 10.1167/iovs.17-21793.
|
43. |
Luo T, Gast TJ, Vermeer TJ, et al. Retinal vascular branching in healthy and diabetic subjects[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2685-2694. DOI: 10.1167/iovs.17-21653.
|
44. |
Attiku Y, He Y, Nittala MG, et al. Current status and future possibilities of retinal imaging in diabetic retinopathy care applicable to low- and medium-income countries[J]. Indian J Ophthalmol, 2021, 69(11): 2968-2976. DOI: 10.4103/ijo.IJO_1212_21.
|
45. |
Datlinger F, Wassermann L, Reumueller A, et al. Assessment of detailed photoreceptor structure and retinal sensitivity in diabetic macular ischemia using adaptive optics-OCT and microperimetry[J]. Invest Ophthalmol Vis Sci, 2021, 62(13): 1-10. DOI: 10.1167/iovs.62.13.1.
|
46. |
Pinhas A, Dubow M, Shah N, et al. Fellow eye changes in patients with nonischemic central retinal vein occlusion: assessment of perfused foveal microvascular density and identification of nonperfused capillaries[J]. Retina, 2015, 35(10): 2028-2036. DOI: 10.1097/IAE.0000000000000586.
|
47. |
Iida Y, Muraoka Y, Uji A, et al. Associations between macular edema and circulatory status in eyes with retinal vein occlusion: an adaptive optics scanning laser ophthalmoscopy study[J]. Retina, 2017, 37(10): 1896-1904. DOI: 10.1097/IAE.0000000000001433.
|
48. |
Mautuit T, Cunnac P, Truffer F, et al. Absolute retinal blood flow in healthy eyes and in eyes with retinal vein occlusion[J]. Microvasc Res, 2024, 152(1): 104648-104657. DOI: 10.1016/j.mvr.2023.104648.
|
49. |
Errera MH, Laguarrigue M, Rossant F, et al. High-resolution imaging of retinal vasculitis by flood illumination adaptive optics ophthalmoscopy: a follow-up study[J]. Ocul Immunol Inflamm, 2020, 28(8): 1171-1180. DOI: 10.1080/09273948.2019.1646773.
|
50. |
Biggee K, Gale MJ, Smith TB, et al. Parafoveal cone abnormalities and recovery on adaptive optics in posterior uveitis[J]. Am J Ophthalmol Case Rep, 2016, 1(1): 16-22. DOI: 10.1016/j.ajoc.2016.03.001.
|
51. |
Amarasekera S, Williams AM, Freund KB, et al. Multimodal imaging of multifocal choroiditis with adaptive optics ophthalmoscopy[J]. Retin Cases Brief Rep, 2022, 16(6): 747-753. DOI: 10.1097/ICB.0000000000001134.
|
52. |
Kadomoto S, Uji A, Arichika S, et al. Macular cone abnormalities in Behçet's disease detected by adaptive optics scanning light ophthalmoscope[J]. Ophthalmic Surg Lasers Imaging Retina, 2021, 52(4): 218-225. DOI: 10.3928/23258160-20210330-06.
|
53. |
Agarwal A, Soliman MK, Hanout M, et al. Adaptive optics imaging of retinal photoreceptors overlying lesions in white dot syndrome and its functional correlation[J]. Am J Ophthalmol, 2015, 160(4): 806-816. DOI: 10.1016/j.ajo.2015.07.013.
|
54. |
Nakamura T, Hayashi A, Oiwake T. Recovery of macular cone photoreceptors in Vogt-Koyanagi-Harada disease[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(2): 387-394. DOI: 10.1007/s00417-017-3869-5.
|
55. |
Ochinciuc R, Ochinciuc U, Stanca HT, et al. Photoreceptor assessment in focal laser-treated central serous chorioretinopathy using adaptive optics and fundus autofluorescence[J/OL]. Medicine (Baltimore), 2020, 99(15): e19536[2020-04-01]. https://pubmed.ncbi.nlm.nih.gov/32282703/. DOI: 10.1097/MD.0000000000019536.
|
56. |
Meirelles ALB, Rodrigues MW, Guirado AF, et al. Photoreceptor assessment using adaptive optics in resolved central serous chorioretinopathy[J]. Arq Bras Oftalmol, 2017, 80(3): 192-195. DOI: 10.5935/0004-2749.20170047.
|
57. |
Vogel RN, Langlo CS, Scoles D, et al. High-resolution imaging of intraretinal structures in active and resolved central serous chorioretinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 42-49. DOI: 10.1167/iovs.16-20351.
|
58. |
Nakamura T, Ueda-Consolvo T, Oiwake T, et al. Correlation between outer retinal layer thickness and cone density in patients with resolved central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(12): 2347-2354. DOI: 10.1007/s00417-016-3403-1.
|
59. |
Wang Q, Tuten WS, Lujan BJ, et al. Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 778-786. DOI: 10.1167/iovs.14-15576.
|
60. |
Mehta RA, Akkali MC, Jayadev C, et al. Morphometric analysis of retinal arterioles in control and hypertensive population using adaptive optics imaging[J]. Indian J Ophthalmol, 2019, 67(10): 1673-1677. DOI: 10.4103/ijo.IJO_253_19.
|
61. |
Navajas EV, Schuck NJ, Athwal A, et al. Long-term assessment of internal limiting membrane peeling for full-thickness macular hole using en face adaptive optics and conventional optical coherence tomography[J]. Can J Ophthalmol, 2023, 58(2): 90-96. DOI: 10.1016/j.jcjo.2021.09.010.
|
62. |
Debellemanière G, Flores M, Tumahai P, et al. Assessment of parafoveal cone density in patients taking hydroxychloroquine in the absence of clinically documented retinal toxicity[J]. Acta Ophthalmol, 2015, 93(7): 534-540. DOI: 10.1111/aos.12728.
|
63. |
Li YX, Xia XB, Paulus YM. Advances in retinal optical imaging[J]. Photonics, 2018, 5(2): 9-30. DOI: 10.3390/photonics5020009.
|
64. |
Morgan JIW, Chui TYP, Grieve K. Twenty-five years of clinical applications using adaptive optics ophthalmoscopy[J]. Biomed Opt Express, 2022, 14(1): 387-428. DOI: 10.1364/BOE.472274.
|
65. |
Jayabalan GS, Kessler R, Fischer J, et al. Compact adaptive optics scanning laser ophthalmoscope with phase plates[J]. Springer, 2019, 18(1): 377-394. DOI: 10.1007/978-3-030-16638-0_18.
|
66. |
《进展期年龄相关性黄斑变性成像模式及应用专家共识(2024)》专家组, 国际转化医学会眼科专业委员会, 中国医药教育协会眼科影像与智能医疗分会. 进展期年龄相关性黄斑变性成像模式及应用专家共识(2024)[J]. 中华实验眼科杂志, 2024, 42(2): 97-107. DOI: 10.3760/cma.j.cn115989-20230522-00183.Expert consensus on imaging model and application of advancing age-related macular degeneration (2024) Expert Group, International Society of Translational Medicine Ophthalmology Professional Committee, Chinese Medical Education Association Ophthalmic Imaging and Intelligent Medical branch. Expert consensus on imaging model and application of advancing age-related macular degeneration (2024)[J]. Chin J Pract Ophthalmol, 2024, 42(2): 97-107. DOI: 10.3760/cma.j.cn115989-20230522-00183.
|