Proliferative diabetic retinopathy is a serious complication of diabetes in the eye that can lead to severe vision loss or even complete vision loss. In recent years, with the rapid development of surgical equipment and fundus examination technology, the indications for pars plana vitrectomy based surgical treatment have been expanded, surgical improvement and application, combined application of drugs, such as anti-vascular endothelial growth factor drugs, glucocorticoids, and surgical evaluation have made new progress. Surgical evaluation based on imaging can continuously monitor patients' eye conditions before, during and after surgery, and clinicians can choose different surgical plans and timing for different patients, which can help reduce patients' pain and achieve better visual outcomes.
Citation: Pan Yue, Li Wenbo, Hu Bojie. Research progress of surgery for proliferative diabetic retinopathy. Chinese Journal of Ocular Fundus Diseases, 2024, 40(11): 887-892. doi: 10.3760/cma.j.cn511434-20240605-00223 Copy
1. | Pollack JS, Sabherwal N. Small gauge vitrectomy: operative techniques[J]. Curr Opin Ophthalmol, 2019, 30(3): 159-164. DOI: 10.1097/ICU.0000000000000568. |
2. | Mohamed S, Claes C, Tsang CW. Review of small gauge vitrectomy: progress and innovations[J/OL]. J Ophthalmol, 2017, 2017: 6285869[2017-05-10]. https://pubmed.ncbi.nlm.nih.gov/28589037/. DOI: 10.1155/2017/6285869. |
3. | Chen SN, Chen SJ, Wu TT, et al. Refining vitrectomy for proliferative diabetic retinopathy[J]. Graefe’s Arch Clin Exp Ophthalmol, 2023, 261(12): 3659-3670. DOI: 10.1007/s00417-023-06134-w. |
4. | Charles S, Ho AC, Dugel PU, et al. Clinical comparison of 27-gauge and 23-gauge instruments on the outcomes of pars plana vitrectomy surgery for the treatment of vitreoretinal diseases[J]. Curr Opin Ophthalmol, 2020, 31(3): 185-191. DOI: 10.1097/ICU.0000000000000659. |
5. | Chen PL, Chen YT, Chen SN. Comparison of 27-gauge and 25-gauge vitrectomy in the management of tractional retinal detachment secondary to proliferative diabetic retinopathy[J/OL]. PLoS One, 2021, 16(3): e0249139[2021-04-25]. https://pubmed.ncbi.nlm.nih.gov/33765074/. DOI: 10.1371/journal.pone.0249139. |
6. | 白石, 韩道新. 27G+/25G+微创玻璃体切割手术治疗玻璃体视网膜疾病的比较[J]. 国际眼科杂志, 2023, 23(5): 856-859. DOI: 10.3980/j.issn.1672-5123.Bai S, Han DX. Comparison of 25-Gauge+ and 27-Gauge+micro- invasive vitrectomy for vitreoretinal diseases[J]. Int Eye Sci, 2023, 23(5): 856-859. DOI: 10.3980/j.issn.1672-5123. |
7. | Khan MA, Kuley A, Riemann CD, et al. Long-term visual outcomes and safety profile of 27-gauge pars plana vitrectomy for posterior segment disease[J]. Ophthalmology, 2018, 125(3): 423-431. DOI: 10.1016/j.ophtha.2017.09.013. |
8. | Tieger MG, Rodriguez M, Wang JC, et al. Impact of contact versus non-contact wide-angle viewing systems on outcomes of primary retinal detachment repair (PRO study report number 5)[J]. Br J Ophthalmol, 2021, 105(3): 410-413. DOI: 10.1136/bjophthalmol-2020-315948. |
9. | de Oliveira PR, Berger AR, Chow DR. Vitreoretinal instruments: vitrectomy cutters, endoillumination and wide-angle viewing systems[J/OL]. Int J Retina Vitreous, 2016, 2: 28[2016-11-05]. https://pubmed.ncbi.nlm.nih.gov/27980854/. DOI: 10.1186/s40942-016-0052-9. |
10. | Ribeiro L, Oliveira J, Kuroiwa D, et al. Advances in vitreoretinal surgery[J/OL]. J Clin Med, 2022, 11(21): 6428[2022-10-30]. https://pubmed.ncbi.nlm.nih.gov/36362657/. DOI: 10.3390/jcm11216428. |
11. | La Spina C, Del Turco C, Bogetto C, et al. Wide-angle 3D viewing system with valved trocar applied to chandelier-assisted scleral buckling[J]. Eur J Ophthalmol, 2021, 31(2): 804-806. DOI: 10.1177/1120672120945091. |
12. | Zhang X, Zhu D, Li W, et al. Enhancing surgical precision and efficiency: a study and comparison of a three-dimensional surgical video system in proliferative diabetic retinopathy surgery[J/OL]. Front Med (Lausanne), 2023, 10: 1246936[2023-10-02]. https://pubmed.ncbi.nlm.nih.gov/37849491/. DOI: 10.3389/fmed.2023.1246936. |
13. | 中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2022年)−基于循证医学修订[J]. 中华眼底病杂志, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.Fundus Disease Group of Chinese Ophthalmological Society, Fundus Disease Group of Chinese Ophthalmologist Association. Diabetic retinopathy clinical guidelines in China (2022)[J]. Chin J Ocul Fundus Dis, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018. |
14. | Berrocal MH, Acaba-Berrocal L, Acaba AM. Long-term outcomes of same patient eyes treated with pars plana vitrectomy in one eye and conventional treatment in the other for complications of proliferative diabetic retinopathy[J/OL]. J Clin Med, 2022, 11(18): 5399[2022-09-14]. https://pubmed.ncbi.nlm.nih.gov/36143049/. DOI: 10.3390/jcm11185399. |
15. | Berrocal MH, Acaba-Berrocal L. Early pars plana vitrectomy for proliferative diabetic retinopathy: update and review of current literature[J]. Curr Opin Ophthalmol, 2021, 32(3): 203-208. DOI: 10.1097/ICU.0000000000000760. |
16. | Lin J, Chang JS, Yannuzzi NA, et al. Cost evaluation of early vitrectomy versus panretinal photocoagulation and intravitreal ranibizumab for proliferative diabetic retinopathy[J]. Ophthalmology, 2018, 125(9): 1393-1400. DOI: 10.1016/j.ophtha.2018.02.038. |
17. | Tan SZ, Steel DH, Stanzel BV, et al. Safety and effectiveness of pre-emptive diabetic vitrectomy in patients with severe, non-fibrotic retinal neovascularisation despite panretinal photocoagulation[J]. Eye (Lond), 2023, 37(8): 1553-1557. DOI: 10.1038/s41433-022-02167-3. |
18. | Ożóg MK, Nowak-Wąs M, Rokicki W. Pathophysiology and clinical aspects of epiretinal membrane-review[J/OL]. Front Med (Lausanne), 2023, 10: 1121270[2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/37636571/. DOI: 10.3389/fmed.2023.1121270. |
19. | Wu RH, Xu MN, Lin K, et al. Inner limiting membrane peeling prevents secondary epiretinal membrane after vitrectomy for proliferative diabetic retinopathy[J]. Int J Ophthalmol, 2022, 15(9): 1496-1501. DOI: 10.18240/ijo.2022.09.13. |
20. | Rush RB, Del Valle Penella A, Reinauer RM, et al. Internal limiting membrane peeling during vitrectomy for diabetic vitreous hemorrhage: a randomized clinical trial[J]. Retina, 2021, 41(5): 1118-1126. DOI: 10.1097/IAE.0000000000002976. |
21. | Rush RB, Gomez PL, Rush SW, et al. Internal limiting membrane peeling in patients undergoing vitrectomy for tractional retinal detachment secondary to diabetic retionpathy[J]. Retina, 2023, 43(8): 1282-1290. DOI: 10.1097/IAE.0000000000003812. |
22. | Jun SY, Hwang DD. Effect of vitrectomy with silicone oil tamponade and internal limiting membrane peeling on eyes with proliferative diabetic retinopathy[J/OL]. Sci Rep, 2022, 12(1): 8076[2022-05-16]. https://pubmed.ncbi.nlm.nih.gov/35577870/. DOI: 10.1038/s41598-022-12113-8. |
23. | Romano MR, Allegrini D, Della Guardia C, et al. Vitreous and intraretinal macular changes in diabetic macular edema with and without tractional components[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(1): 1-8. DOI: 10.1007/s00417-018-4173-8. |
24. | Abdel Hadi AM. Evaluation of vitrectomy with planned foveal detachment as surgical treatment for refractory diabetic macular edema with or without vitreomacular interface abnormality[J/OL]. J Ophthalmol, 2018, 2018: 9246384[2018-05-07]. https://pubmed.ncbi.nlm.nih.gov/29854429/. DOI: 10.1155/2018/9246384. |
25. | Rinaldi M, dell’Omo R, Morescalchi F, et al. ILM peeling in nontractional diabetic macular edema: review and metanalysis[J]. Int Ophthalmol, 2018, 38(6): 2709-2714. DOI: 10.1007/s10792-017-0761-6. |
26. | Clark A, Balducci N, Pichi F, et al. Swelling of the arcuate nerve fiber layer after internal limiting membrane peeling[J]. Retina, 2012, 32(8): 1608-1613. DOI: 10.1097/IAE.0b013e3182437e86. |
27. | Horozoglu F, Sener H, Polat OA, et al. Evaluation of long-term outcomes associated with extended heavy-silicone oil use for the treatment of inferior retinal detachment[J/OL]. Sci Rep, 2022, 12(1): 11636[2022-07-08]. https://pubmed.ncbi.nlm.nih.gov/35804082/. DOI: 10.1038/s41598-022-15896-y. |
28. | Sborgia L, Albano V, Sborgia A, et al. Functional and anatomical outcomes after short-term heavy silicone oil endotamponade for rhegmatogenous retinal redetachment, a pilot study[J]. Retina, 2024, 44(7): 1142-1149. DOI: 10.1097/IAE.0000000000004092. |
29. | Singh DV, Reddy RR, Upadhyay A, et al. Ultrasonic fragmentation for removing thick organized clots during diabetic vitrectomy-A novel technique[J]. Indian J Ophthalmol, 2022, 70(6): 2184-2186. DOI: 10.4103/ijo.IJO_3063_21. |
30. | Gross JG, Glassman AR, Liu D, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous Ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(10): 1138-1148. DOI: 10.1001/jamaophthalmol.2018.3255. |
31. | Park YJ, Ahn J, Kim TW, et al. Efficacy of bevacizumab for vitreous haemorrhage in proliferative diabetic retinopathy with prior complete panretinal photocoagulation[J]. Eye (Lond), 2021, 35(11): 3056-3063. DOI: 10.1038/s41433-020-01384-y. |
32. | Li S, Yang Y, Zou J, et al. The efficacy and safety of intravitreal injection of Ranibizumab as pre-treatment for vitrectomy in proliferative diabetic retinopathy with vitreous hemorrhage[J/OL]. BMC Ophthalmol, 2022, 22(1): 63[2022-02-10]. https://pubmed.ncbi.nlm.nih.gov/35139812/. DOI: 10.1186/s12886-022-02303-3. |
33. | Chakraborty D, Maiti A, Kelkar A, et al. Outcomes of preoperative bevacizumab in diabetics with nonclearing vitreous hemorrhage without tractional detachment-A quasi-randomized retrospective study[J]. Indian J Ophthalmol, 2021, 69(11): 3283-3287. DOI: 10.4103/ijo.IJO_1264_21. |
34. | Wang DY, Zhao XY, Zhang WF, et al. Perioperative anti-vascular endothelial growth factor agents treatment in patients undergoing vitrectomy for complicated proliferative diabetic retinopathy: a network meta-analysis[J/OL]. Sci Rep, 2020, 10(1): 18880[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/33144606/. DOI: 10.1038/s41598-020-75896-8. |
35. | Bressler NM, Beaulieu WT, Bressler SB, et al. Anti-vascular endothelial growth factor therapy and risk of traction retinal detachment in eyes with proliferative diabetic retinopathy: pooled analysis of five DRCR retina network randomized clinical trials[J]. Retina, 2020, 40(6): 1021-1028. DOI: 10.1097/IAE.0000000000002633. |
36. | Takayama K, Someya H, Yokoyama H, et al. Potential bias of preoperative intravitreal anti-VEGF injection for complications of proliferative diabetic retinopathy[J/OL]. PLoS One, 2021, 16(10): e0258415[2021-10-08]. https://pubmed.ncbi.nlm.nih.gov/34624063/. DOI: 10.1371/journal.pone.0258415. |
37. | Yang Z, Di Y, Ye J, et al. Comparison of the adjuvant effect of conbercept intravitreal injection at different times before vitrectomy for proliferative diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1171628[2023-05-26]. https://pubmed.ncbi.nlm.nih.gov/37305048/. DOI: 10.3389/fendo.2023.1171628. |
38. | 李筱荣, 任新军. 重视眼底手术的创新[J]. 中华眼底病杂志, 2023, 39(12): 959-963. DOI: 10.3760/cma.j.cn511434-20231211-00478.Li XR, Ren XJ. Attaches importance to the innovation of the retinal surgery[J]. Chin J Ocul Fundus Dis, 2023, 39(12): 959-963. DOI: 10.3760/cma.j.cn511434-20231211-00478. |
39. | Iacono P, Parodi MB, Scaramuzzi M, et al. Morphological and functional changes in recalcitrant diabetic macular oedema after intravitreal dexamethasone implant[J]. Br J Ophthalmol, 2017, 101(6): 791-795. DOI: 10.1136/bjophthalmol-2016-308726. |
40. | Liao M, Huang Y, Wang J, et al. Long-term outcomes of administration of intravitreal triamcinolone acetonide after posterior vitreous detachment during pars plana vitrectomy for proliferative diabetic retinopathy[J]. Br J Ophthalmol, 2023, 107(4): 560-564. DOI: 10.1136/bjophthalmol-2021-320332. |
41. | Takamura Y, Shimura M, Katome T, et al. Effect of intravitreal triamcinolone acetonide injection at the end of vitrectomy for vitreous haemorrhage related to proliferative diabetic retinopathy[J]. Br J Ophthalmol, 2018, 102(10): 1351-1357. DOI: 10.1136/bjophthalmol-2017-311377. |
42. | Limon U, Sezgin Akçay BI. Efficacy of intravitreal dexamethasone after combined phacoemulsification and pars plana vitrectomy for diabetic tractional retinal detachments[J]. J Ocul Pharmacol Ther, 2022, 38(2): 176-182. DOI: 10.1089/jop.2021.0072. |
43. | Cornish EE, Teo KY, Gillies MC, et al. Five-year outcomes of eyes initially enrolled in the 2-year BEVORDEX trial of bevacizumab or dexamethasone implants for diabetic macular oedema[J]. Br J Ophthalmol, 2023, 107(1): 79-83. DOI: 10.1136/bjophthalmol-2021-319839. |
44. | Mohamed IE, Mohamed MA, Yousef M, et al. Use of ophthalmic B-scan ultrasonography in determining the causes of low vision in patients with diabetic retinopathy[J]. Eur J Radiol Open, 2018, 5: 79-86. DOI: 10.1016/j.ejro.2018.05.002. |
45. | Huang X, Zhang P, Zou X, et al. Thinner average choroidal thickness is a risk factor for the onset of diabetic retinopathy[J]. Ophthalmic Res, 2020, 63(3): 259-270. DOI: 10.1159/000504756. |
46. | Nakano H, Hasebe H, Murakami K, et al. Choroidal vascular density in diabetic retinopathy assessed with swept-source optical coherence tomography[J]. Retina, 2023, 43(1): 34-41. DOI: 10.1097/IAE.0000000000003644. |
47. | Nicholson L, Ramu J, Chan EW, et al. Retinal nonperfusion characteristics on ultra-widefield angiography in eyes with severe nonproliferative diabetic retinopathy and proliferative diabetic retinopathy[J]. JAMA Ophthalmol, 2019, 137(6): 626-631. DOI: 10.1001/jamaophthalmol.2019.0440. |
48. | Verma A, Alagorie AR, Ramasamy K, et al. Distribution of peripheral lesions identified by mydriatic ultra-wide field fundus imaging in diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(4): 725-733. DOI: 10.1007/s00417-020-04607-w. |
49. | Pichi F, Smith SD, Abboud EB, et al. Wide-field optical coherence tomography angiography for the detection of proliferative diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 36(4): 162-167. DOI: 10.1080/08820538.2021.1887901. |
50. | Lois N, Cook JA, Wang A, et al. Evaluation of a new model of care for people with complications of diabetic retinopathy: The EMERALD Study[J]. Ophthalmology, 2021, 128(4): 561-573. DOI: 10.1016/j.ophtha.2020.10.030. |
51. | Lois N, Cook J, Aldington S, et al. Effectiveness of multimodal imaging for the evaluation of retinal oedema and new vessels in diabetic retinopathy (EMERALD)[J/OL]. BMJ Open, 2019, 9(6): e027795[2019-06-28]. https://pubmed.ncbi.nlm.nih.gov/31256030/. DOI: 10.1136/bmjopen-2018-027795. |
52. | Lim JI, Regillo CD, Sadda SR, et al. Artificial intelligence detection of diabetic retinopathy: subgroup comparison of the EyeArt system with ophthalmologists’ dilated examinations[J/OL]. Ophthalmol Sci, 2022, 3(1): 100228[2022-09-30]. https://pubmed.ncbi.nlm.nih.gov/36345378/. DOI: 10.1016/j.xops.2022.100228. |
53. | Olvera-Barrios A, Heeren TF, Balaskas K, et al. Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images[J]. Br J Ophthalmol, 2021, 105(2): 265-270. DOI: 10.1136/bjophthalmol-2019-315394. |
54. | Nishitsuka K, Nishi K, Yamashita H. Effectiveness of intraoperative optical coherence tomography on vitrectomy for proliferative diabetic retinopathy[J]. Jpn J Ophthalmol, 2022, 66(6): 527-533. DOI: 10.1007/s10384-022-00944-x. |
55. | Imai H, Tetsumoto A, Inoue S, et al. Intraoperative three-dimensional fluorescein angiography-guided pars plana vitrectomy for the treatment of proliferative diabetic retinopathy: the maximized utility of the digital assisted vitrectomy[J]. Retina, 2023, 43(2): 359-362. DOI: 10.1097/IAE.0000000000002805. |
56. | Nishi K, Nishitsuka K, Yamamoto T, et al. Factors correlated with visual outcomes at two and four years after vitreous surgery for proliferative diabetic retinopathy[J/OL]. PLoS One, 2021, 16(1): e0244281[2021-01-14]. https://pubmed.ncbi.nlm.nih.gov/33444332/. DOI: 10.1371/journal.pone.0244281. |
57. | Tandias R, Lemire CA, Palvadi K, et al. Posterior vitreous detachment status as a predictive factor for outcomes of vitrectomy for diabetic vitreous hemorrhage[J]. Retina, 2022, 42(6): 1103-1110. DOI: 10.1097/IAE.0000000000003453. |
58. | Guo H, Wang Z, Nie Z, et al. Establishment and validation of a prognostic nomogram for long-term low vision after diabetic vitrectomy[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1196335[2023-08-25]. https://pubmed.ncbi.nlm.nih.gov/37693349/. DOI: 10.3389/fendo.2023.1196335. |
- 1. Pollack JS, Sabherwal N. Small gauge vitrectomy: operative techniques[J]. Curr Opin Ophthalmol, 2019, 30(3): 159-164. DOI: 10.1097/ICU.0000000000000568.
- 2. Mohamed S, Claes C, Tsang CW. Review of small gauge vitrectomy: progress and innovations[J/OL]. J Ophthalmol, 2017, 2017: 6285869[2017-05-10]. https://pubmed.ncbi.nlm.nih.gov/28589037/. DOI: 10.1155/2017/6285869.
- 3. Chen SN, Chen SJ, Wu TT, et al. Refining vitrectomy for proliferative diabetic retinopathy[J]. Graefe’s Arch Clin Exp Ophthalmol, 2023, 261(12): 3659-3670. DOI: 10.1007/s00417-023-06134-w.
- 4. Charles S, Ho AC, Dugel PU, et al. Clinical comparison of 27-gauge and 23-gauge instruments on the outcomes of pars plana vitrectomy surgery for the treatment of vitreoretinal diseases[J]. Curr Opin Ophthalmol, 2020, 31(3): 185-191. DOI: 10.1097/ICU.0000000000000659.
- 5. Chen PL, Chen YT, Chen SN. Comparison of 27-gauge and 25-gauge vitrectomy in the management of tractional retinal detachment secondary to proliferative diabetic retinopathy[J/OL]. PLoS One, 2021, 16(3): e0249139[2021-04-25]. https://pubmed.ncbi.nlm.nih.gov/33765074/. DOI: 10.1371/journal.pone.0249139.
- 6. 白石, 韩道新. 27G+/25G+微创玻璃体切割手术治疗玻璃体视网膜疾病的比较[J]. 国际眼科杂志, 2023, 23(5): 856-859. DOI: 10.3980/j.issn.1672-5123.Bai S, Han DX. Comparison of 25-Gauge+ and 27-Gauge+micro- invasive vitrectomy for vitreoretinal diseases[J]. Int Eye Sci, 2023, 23(5): 856-859. DOI: 10.3980/j.issn.1672-5123.
- 7. Khan MA, Kuley A, Riemann CD, et al. Long-term visual outcomes and safety profile of 27-gauge pars plana vitrectomy for posterior segment disease[J]. Ophthalmology, 2018, 125(3): 423-431. DOI: 10.1016/j.ophtha.2017.09.013.
- 8. Tieger MG, Rodriguez M, Wang JC, et al. Impact of contact versus non-contact wide-angle viewing systems on outcomes of primary retinal detachment repair (PRO study report number 5)[J]. Br J Ophthalmol, 2021, 105(3): 410-413. DOI: 10.1136/bjophthalmol-2020-315948.
- 9. de Oliveira PR, Berger AR, Chow DR. Vitreoretinal instruments: vitrectomy cutters, endoillumination and wide-angle viewing systems[J/OL]. Int J Retina Vitreous, 2016, 2: 28[2016-11-05]. https://pubmed.ncbi.nlm.nih.gov/27980854/. DOI: 10.1186/s40942-016-0052-9.
- 10. Ribeiro L, Oliveira J, Kuroiwa D, et al. Advances in vitreoretinal surgery[J/OL]. J Clin Med, 2022, 11(21): 6428[2022-10-30]. https://pubmed.ncbi.nlm.nih.gov/36362657/. DOI: 10.3390/jcm11216428.
- 11. La Spina C, Del Turco C, Bogetto C, et al. Wide-angle 3D viewing system with valved trocar applied to chandelier-assisted scleral buckling[J]. Eur J Ophthalmol, 2021, 31(2): 804-806. DOI: 10.1177/1120672120945091.
- 12. Zhang X, Zhu D, Li W, et al. Enhancing surgical precision and efficiency: a study and comparison of a three-dimensional surgical video system in proliferative diabetic retinopathy surgery[J/OL]. Front Med (Lausanne), 2023, 10: 1246936[2023-10-02]. https://pubmed.ncbi.nlm.nih.gov/37849491/. DOI: 10.3389/fmed.2023.1246936.
- 13. 中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2022年)−基于循证医学修订[J]. 中华眼底病杂志, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.Fundus Disease Group of Chinese Ophthalmological Society, Fundus Disease Group of Chinese Ophthalmologist Association. Diabetic retinopathy clinical guidelines in China (2022)[J]. Chin J Ocul Fundus Dis, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.
- 14. Berrocal MH, Acaba-Berrocal L, Acaba AM. Long-term outcomes of same patient eyes treated with pars plana vitrectomy in one eye and conventional treatment in the other for complications of proliferative diabetic retinopathy[J/OL]. J Clin Med, 2022, 11(18): 5399[2022-09-14]. https://pubmed.ncbi.nlm.nih.gov/36143049/. DOI: 10.3390/jcm11185399.
- 15. Berrocal MH, Acaba-Berrocal L. Early pars plana vitrectomy for proliferative diabetic retinopathy: update and review of current literature[J]. Curr Opin Ophthalmol, 2021, 32(3): 203-208. DOI: 10.1097/ICU.0000000000000760.
- 16. Lin J, Chang JS, Yannuzzi NA, et al. Cost evaluation of early vitrectomy versus panretinal photocoagulation and intravitreal ranibizumab for proliferative diabetic retinopathy[J]. Ophthalmology, 2018, 125(9): 1393-1400. DOI: 10.1016/j.ophtha.2018.02.038.
- 17. Tan SZ, Steel DH, Stanzel BV, et al. Safety and effectiveness of pre-emptive diabetic vitrectomy in patients with severe, non-fibrotic retinal neovascularisation despite panretinal photocoagulation[J]. Eye (Lond), 2023, 37(8): 1553-1557. DOI: 10.1038/s41433-022-02167-3.
- 18. Ożóg MK, Nowak-Wąs M, Rokicki W. Pathophysiology and clinical aspects of epiretinal membrane-review[J/OL]. Front Med (Lausanne), 2023, 10: 1121270[2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/37636571/. DOI: 10.3389/fmed.2023.1121270.
- 19. Wu RH, Xu MN, Lin K, et al. Inner limiting membrane peeling prevents secondary epiretinal membrane after vitrectomy for proliferative diabetic retinopathy[J]. Int J Ophthalmol, 2022, 15(9): 1496-1501. DOI: 10.18240/ijo.2022.09.13.
- 20. Rush RB, Del Valle Penella A, Reinauer RM, et al. Internal limiting membrane peeling during vitrectomy for diabetic vitreous hemorrhage: a randomized clinical trial[J]. Retina, 2021, 41(5): 1118-1126. DOI: 10.1097/IAE.0000000000002976.
- 21. Rush RB, Gomez PL, Rush SW, et al. Internal limiting membrane peeling in patients undergoing vitrectomy for tractional retinal detachment secondary to diabetic retionpathy[J]. Retina, 2023, 43(8): 1282-1290. DOI: 10.1097/IAE.0000000000003812.
- 22. Jun SY, Hwang DD. Effect of vitrectomy with silicone oil tamponade and internal limiting membrane peeling on eyes with proliferative diabetic retinopathy[J/OL]. Sci Rep, 2022, 12(1): 8076[2022-05-16]. https://pubmed.ncbi.nlm.nih.gov/35577870/. DOI: 10.1038/s41598-022-12113-8.
- 23. Romano MR, Allegrini D, Della Guardia C, et al. Vitreous and intraretinal macular changes in diabetic macular edema with and without tractional components[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(1): 1-8. DOI: 10.1007/s00417-018-4173-8.
- 24. Abdel Hadi AM. Evaluation of vitrectomy with planned foveal detachment as surgical treatment for refractory diabetic macular edema with or without vitreomacular interface abnormality[J/OL]. J Ophthalmol, 2018, 2018: 9246384[2018-05-07]. https://pubmed.ncbi.nlm.nih.gov/29854429/. DOI: 10.1155/2018/9246384.
- 25. Rinaldi M, dell’Omo R, Morescalchi F, et al. ILM peeling in nontractional diabetic macular edema: review and metanalysis[J]. Int Ophthalmol, 2018, 38(6): 2709-2714. DOI: 10.1007/s10792-017-0761-6.
- 26. Clark A, Balducci N, Pichi F, et al. Swelling of the arcuate nerve fiber layer after internal limiting membrane peeling[J]. Retina, 2012, 32(8): 1608-1613. DOI: 10.1097/IAE.0b013e3182437e86.
- 27. Horozoglu F, Sener H, Polat OA, et al. Evaluation of long-term outcomes associated with extended heavy-silicone oil use for the treatment of inferior retinal detachment[J/OL]. Sci Rep, 2022, 12(1): 11636[2022-07-08]. https://pubmed.ncbi.nlm.nih.gov/35804082/. DOI: 10.1038/s41598-022-15896-y.
- 28. Sborgia L, Albano V, Sborgia A, et al. Functional and anatomical outcomes after short-term heavy silicone oil endotamponade for rhegmatogenous retinal redetachment, a pilot study[J]. Retina, 2024, 44(7): 1142-1149. DOI: 10.1097/IAE.0000000000004092.
- 29. Singh DV, Reddy RR, Upadhyay A, et al. Ultrasonic fragmentation for removing thick organized clots during diabetic vitrectomy-A novel technique[J]. Indian J Ophthalmol, 2022, 70(6): 2184-2186. DOI: 10.4103/ijo.IJO_3063_21.
- 30. Gross JG, Glassman AR, Liu D, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous Ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(10): 1138-1148. DOI: 10.1001/jamaophthalmol.2018.3255.
- 31. Park YJ, Ahn J, Kim TW, et al. Efficacy of bevacizumab for vitreous haemorrhage in proliferative diabetic retinopathy with prior complete panretinal photocoagulation[J]. Eye (Lond), 2021, 35(11): 3056-3063. DOI: 10.1038/s41433-020-01384-y.
- 32. Li S, Yang Y, Zou J, et al. The efficacy and safety of intravitreal injection of Ranibizumab as pre-treatment for vitrectomy in proliferative diabetic retinopathy with vitreous hemorrhage[J/OL]. BMC Ophthalmol, 2022, 22(1): 63[2022-02-10]. https://pubmed.ncbi.nlm.nih.gov/35139812/. DOI: 10.1186/s12886-022-02303-3.
- 33. Chakraborty D, Maiti A, Kelkar A, et al. Outcomes of preoperative bevacizumab in diabetics with nonclearing vitreous hemorrhage without tractional detachment-A quasi-randomized retrospective study[J]. Indian J Ophthalmol, 2021, 69(11): 3283-3287. DOI: 10.4103/ijo.IJO_1264_21.
- 34. Wang DY, Zhao XY, Zhang WF, et al. Perioperative anti-vascular endothelial growth factor agents treatment in patients undergoing vitrectomy for complicated proliferative diabetic retinopathy: a network meta-analysis[J/OL]. Sci Rep, 2020, 10(1): 18880[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/33144606/. DOI: 10.1038/s41598-020-75896-8.
- 35. Bressler NM, Beaulieu WT, Bressler SB, et al. Anti-vascular endothelial growth factor therapy and risk of traction retinal detachment in eyes with proliferative diabetic retinopathy: pooled analysis of five DRCR retina network randomized clinical trials[J]. Retina, 2020, 40(6): 1021-1028. DOI: 10.1097/IAE.0000000000002633.
- 36. Takayama K, Someya H, Yokoyama H, et al. Potential bias of preoperative intravitreal anti-VEGF injection for complications of proliferative diabetic retinopathy[J/OL]. PLoS One, 2021, 16(10): e0258415[2021-10-08]. https://pubmed.ncbi.nlm.nih.gov/34624063/. DOI: 10.1371/journal.pone.0258415.
- 37. Yang Z, Di Y, Ye J, et al. Comparison of the adjuvant effect of conbercept intravitreal injection at different times before vitrectomy for proliferative diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1171628[2023-05-26]. https://pubmed.ncbi.nlm.nih.gov/37305048/. DOI: 10.3389/fendo.2023.1171628.
- 38. 李筱荣, 任新军. 重视眼底手术的创新[J]. 中华眼底病杂志, 2023, 39(12): 959-963. DOI: 10.3760/cma.j.cn511434-20231211-00478.Li XR, Ren XJ. Attaches importance to the innovation of the retinal surgery[J]. Chin J Ocul Fundus Dis, 2023, 39(12): 959-963. DOI: 10.3760/cma.j.cn511434-20231211-00478.
- 39. Iacono P, Parodi MB, Scaramuzzi M, et al. Morphological and functional changes in recalcitrant diabetic macular oedema after intravitreal dexamethasone implant[J]. Br J Ophthalmol, 2017, 101(6): 791-795. DOI: 10.1136/bjophthalmol-2016-308726.
- 40. Liao M, Huang Y, Wang J, et al. Long-term outcomes of administration of intravitreal triamcinolone acetonide after posterior vitreous detachment during pars plana vitrectomy for proliferative diabetic retinopathy[J]. Br J Ophthalmol, 2023, 107(4): 560-564. DOI: 10.1136/bjophthalmol-2021-320332.
- 41. Takamura Y, Shimura M, Katome T, et al. Effect of intravitreal triamcinolone acetonide injection at the end of vitrectomy for vitreous haemorrhage related to proliferative diabetic retinopathy[J]. Br J Ophthalmol, 2018, 102(10): 1351-1357. DOI: 10.1136/bjophthalmol-2017-311377.
- 42. Limon U, Sezgin Akçay BI. Efficacy of intravitreal dexamethasone after combined phacoemulsification and pars plana vitrectomy for diabetic tractional retinal detachments[J]. J Ocul Pharmacol Ther, 2022, 38(2): 176-182. DOI: 10.1089/jop.2021.0072.
- 43. Cornish EE, Teo KY, Gillies MC, et al. Five-year outcomes of eyes initially enrolled in the 2-year BEVORDEX trial of bevacizumab or dexamethasone implants for diabetic macular oedema[J]. Br J Ophthalmol, 2023, 107(1): 79-83. DOI: 10.1136/bjophthalmol-2021-319839.
- 44. Mohamed IE, Mohamed MA, Yousef M, et al. Use of ophthalmic B-scan ultrasonography in determining the causes of low vision in patients with diabetic retinopathy[J]. Eur J Radiol Open, 2018, 5: 79-86. DOI: 10.1016/j.ejro.2018.05.002.
- 45. Huang X, Zhang P, Zou X, et al. Thinner average choroidal thickness is a risk factor for the onset of diabetic retinopathy[J]. Ophthalmic Res, 2020, 63(3): 259-270. DOI: 10.1159/000504756.
- 46. Nakano H, Hasebe H, Murakami K, et al. Choroidal vascular density in diabetic retinopathy assessed with swept-source optical coherence tomography[J]. Retina, 2023, 43(1): 34-41. DOI: 10.1097/IAE.0000000000003644.
- 47. Nicholson L, Ramu J, Chan EW, et al. Retinal nonperfusion characteristics on ultra-widefield angiography in eyes with severe nonproliferative diabetic retinopathy and proliferative diabetic retinopathy[J]. JAMA Ophthalmol, 2019, 137(6): 626-631. DOI: 10.1001/jamaophthalmol.2019.0440.
- 48. Verma A, Alagorie AR, Ramasamy K, et al. Distribution of peripheral lesions identified by mydriatic ultra-wide field fundus imaging in diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(4): 725-733. DOI: 10.1007/s00417-020-04607-w.
- 49. Pichi F, Smith SD, Abboud EB, et al. Wide-field optical coherence tomography angiography for the detection of proliferative diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 36(4): 162-167. DOI: 10.1080/08820538.2021.1887901.
- 50. Lois N, Cook JA, Wang A, et al. Evaluation of a new model of care for people with complications of diabetic retinopathy: The EMERALD Study[J]. Ophthalmology, 2021, 128(4): 561-573. DOI: 10.1016/j.ophtha.2020.10.030.
- 51. Lois N, Cook J, Aldington S, et al. Effectiveness of multimodal imaging for the evaluation of retinal oedema and new vessels in diabetic retinopathy (EMERALD)[J/OL]. BMJ Open, 2019, 9(6): e027795[2019-06-28]. https://pubmed.ncbi.nlm.nih.gov/31256030/. DOI: 10.1136/bmjopen-2018-027795.
- 52. Lim JI, Regillo CD, Sadda SR, et al. Artificial intelligence detection of diabetic retinopathy: subgroup comparison of the EyeArt system with ophthalmologists’ dilated examinations[J/OL]. Ophthalmol Sci, 2022, 3(1): 100228[2022-09-30]. https://pubmed.ncbi.nlm.nih.gov/36345378/. DOI: 10.1016/j.xops.2022.100228.
- 53. Olvera-Barrios A, Heeren TF, Balaskas K, et al. Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images[J]. Br J Ophthalmol, 2021, 105(2): 265-270. DOI: 10.1136/bjophthalmol-2019-315394.
- 54. Nishitsuka K, Nishi K, Yamashita H. Effectiveness of intraoperative optical coherence tomography on vitrectomy for proliferative diabetic retinopathy[J]. Jpn J Ophthalmol, 2022, 66(6): 527-533. DOI: 10.1007/s10384-022-00944-x.
- 55. Imai H, Tetsumoto A, Inoue S, et al. Intraoperative three-dimensional fluorescein angiography-guided pars plana vitrectomy for the treatment of proliferative diabetic retinopathy: the maximized utility of the digital assisted vitrectomy[J]. Retina, 2023, 43(2): 359-362. DOI: 10.1097/IAE.0000000000002805.
- 56. Nishi K, Nishitsuka K, Yamamoto T, et al. Factors correlated with visual outcomes at two and four years after vitreous surgery for proliferative diabetic retinopathy[J/OL]. PLoS One, 2021, 16(1): e0244281[2021-01-14]. https://pubmed.ncbi.nlm.nih.gov/33444332/. DOI: 10.1371/journal.pone.0244281.
- 57. Tandias R, Lemire CA, Palvadi K, et al. Posterior vitreous detachment status as a predictive factor for outcomes of vitrectomy for diabetic vitreous hemorrhage[J]. Retina, 2022, 42(6): 1103-1110. DOI: 10.1097/IAE.0000000000003453.
- 58. Guo H, Wang Z, Nie Z, et al. Establishment and validation of a prognostic nomogram for long-term low vision after diabetic vitrectomy[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1196335[2023-08-25]. https://pubmed.ncbi.nlm.nih.gov/37693349/. DOI: 10.3389/fendo.2023.1196335.
-
Previous Article
太田痣合并眼底黑色病变2例 -
Next Article
Research progress of retinal pigment epithelial cell transplantation in the treatment of retinitis pigmentosa