1. |
|
2. |
Hou X, Wang L, Zhu D, et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China[J/OL]. Nat Commun, 2023, 14(1): 4296[2023-07-18]. https://pubmed.ncbi.nlm.nih.gov/37463878/. DOI: 10.1038/s41467-023-39864-w.
|
3. |
Zhang SX, Wang JJ, Starr CR, et al. The endoplasmic reticulum: homeostasis and crosstalk in retinal health and disease[J/OL]. Prog Retin Eye Res, 2024, 98: 101231[2023-12-12]. https://pubmed.ncbi.nlm.nih.gov/38092262/. DOI: 10.1016/j.preteyeres.2023.101231.
|
4. |
|
5. |
|
6. |
|
7. |
|
8. |
Yang S, Jiang H, Bian W, et al. Bip-Yorkie interaction determines oncogenic and tumor-suppressive roles of Ire1/Xbp1s activation[J/OL]. Proc Natl Acad Sci USA, 2022, 119(42): e2202133119[2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/36215479/. DOI: 10.1073/pnas.2202133119.
|
9. |
Bahamondes Lorca VA, Bastidas Mayorga BD, Tong L, et al. UVB-induced eIF2α phosphorylation in keratinocytes depends on decreased ATF4, GADD34 and CREP expression levels[J/OL]. Life Sci, 2021, 286: 120044[2021-10-09]. https://pubmed.ncbi.nlm.nih.gov/34637792/. DOI: 10.1016/j.lfs.2021.120044.
|
10. |
|
11. |
|
12. |
|
13. |
|
14. |
|
15. |
|
16. |
|
17. |
|
18. |
Bretón-Romero R, Weisbrod RM, Feng B, et al. Liraglutide treatment reduces endothelial endoplasmic reticulum stress and insulin resistance in patients with diabetes mellitus[J/OL]. J Am Heart Assoc, 2018, 7(18): e009379[2018-09-18]. https://pubmed.ncbi.nlm.nih.gov/30371206/. DOI: 10.1161/jaha.118.009379.
|
19. |
Prasad MK, Victor PS, Ganesh GV, et al. Sodium-glucose cotransporter-2 inhibitor suppresses endoplasmic reticulum stress and oxidative stress in diabetic nephropathy through Nrf2 signaling: a clinical and experimental study[J/OL]. J Clin Pharmacol, 2024, 2024: E1(2024-06-04)[2024-07-23]. https://pubmed.ncbi.nlm.nih.gov/38831713/. DOI: 10.1002/jcph.2465. [published online ahead of print].
|
20. |
|
21. |
Ravi R, Nagarajan H, Muralikumar S, et al. Unveiling the therapeutic potential of a mutated paraoxonase 2 in diabetic retinopathy: defying glycation, mitigating oxidative stress, ER stress and inflammation[J/OL]. Int J Biol Macromol, 2024, 258(Pt 1): 128899[2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/38141706/. DOI: 10.1016/j.ijbiomac.2023.128899.
|
22. |
|
23. |
|
24. |
|
25. |
|
26. |
Yumnamcha T, Guerra M, Singh LP, et al. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy[J/OL]. Antioxidants(Basel), 2020, 9(12): 1244[2020-12-08]. https://pubmed.ncbi.nlm.nih.gov/33302369/. DOI: 10.3390/antiox9121244.
|
27. |
Li Y, Li HY, Shao J, et al. GRP75 modulates endoplasmic reticulum-mitochondria coupling and accelerates Ca2+-dependent endothelial cell apoptosis in diabetic retinopathy[J/OL]. Biomolecules, 2022, 12(12): 1778[2022-11-29]. https://pubmed.ncbi.nlm.nih.gov/36551205/. DOI: 10.3390/biom12121778.
|
28. |
|
29. |
|
30. |
|
31. |
|
32. |
|
33. |
|
34. |
|
35. |
|
36. |
|
37. |
Peng QH, Tong P, Gu LM, et al. Astragalus polysaccharide attenuates metabolic memory-triggered ER stress and apoptosis via regulation of miR-204/SIRT1 axis in retinal pigment epithelial cells[J/OL]. Biosci Rep, 2020, 40(1): BSR20192121[2020-01-31]. https://pubmed.ncbi.nlm.nih.gov/31894851/. DOI: 10.1042/bsr20192121.
|
38. |
Oubaha M, Miloudi K, Dejda A, et al. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy[J/OL]. Sci Transl Med, 2016, 8(362): 362ra144[2016-10-26]. https://pubmed.ncbi.nlm.nih.gov/27797960/. DOI: 10.1126/scitranslmed.aaf9440.
|
39. |
|
40. |
Chung YR, Choi JA, Koh JY, et al. Ursodeoxycholic acid attenuates endoplasmic reticulum stress-related retinal pericyte loss in streptozotocin-induced diabetic mice[J/OL]. J Diabetes Res, 2017, 2017: 1763292 [2017-01-03]. https://pubmed.ncbi.nlm.nih.gov/28127564/. DOI: 10.1155/2017/1763292.
|
41. |
Wen S, Hu M, Chen C, et al. Neuritin alleviates diabetic retinopathy by regulating endoplasmic reticulum stress in rats[J/OL]. Comb Chem High Throughput Screen, 2024, 2024: E1(2024-01-03)[2021-07-23]. https://pubmed.ncbi.nlm.nih.gov/38173210/. DOI: 10.2174/0113862073275316231123060640. [published online ahead of print].
|
42. |
Toragall V, Muzaffar JC, Baskaran V. Lutein loaded double-layered polymer nanocarrier modulate H2O2 and CoCl2 induced oxidative and hypoxia damage and angiogenic markers in ARPE-19 cells[J/OL]. Int J Biol Macromol, 2023, 240: 124378[2023-06-15]. https://pubmed.ncbi.nlm.nih.gov/37030468/. DOI: 10.1016/j.ijbiomac.2023.124378.
|
43. |
|
44. |
|
45. |
Kang MK, Lee EJ, Kim YH, et al. Chrysin ameliorates malfunction of retinoid visual cycle through blocking activation of AGE-RAGE-ER stress in glucose-stimulated retinal pigment epithelial cells and diabetic eyes[J/OL]. Nutrients, 2018, 10(8): 1046[2018-08-08]. https://pubmed.ncbi.nlm.nih.gov/30096827/. DOI: 10.3390/nu10081046.
|
46. |
|
47. |
|
48. |
Wang Y, Wang L, Guo H, et al. Knockdown of MALAT1 attenuates high-glucose-induced angiogenesis and inflammation via endoplasmic reticulum stress in human retinal vascular endothelial cells[J/OL]. Biomed Pharmacother, 2020, 124: 109699[2020-01-25]. https://pubmed.ncbi.nlm.nih.gov/31986419/. DOI: 10.1016/j.biopha.2019.109699.
|
49. |
|
50. |
Huang H, Jing G, Wang JJ, et al. ATF4 is a novel regulator of MCP-1 in microvascular endothelial cells[J/OL]. J Inflamm (Lond), 2015, 12: 31[2015-04-17]. https://pubmed.ncbi.nlm.nih.gov/25914608/. DOI: 10.1186/s12950-015-0076-1.
|
51. |
Trotta MC, Maisto R, Guida F, et al. The activation of retinal HCA2 receptors by systemic beta-hydroxybutyrate inhibits diabetic retinal damage through reduction of endoplasmic reticulum stress and the NLRP3 inflammasome[J/OL]. PLoS One, 2019, 14(1): e0211005[2019-01-18]. https://pubmed.ncbi.nlm.nih.gov/30657794/. DOI: 10.1371/journal.pone.0211005.
|
52. |
|
53. |
|
54. |
Liu J, Wei L, Wang Z, et al. Protective effect of Liraglutide on diabetic retinal neurodegeneration via inhibiting oxidative stress and endoplasmic reticulum stress[J/OL]. Neurochem Int, 2020, 133: 104624[2019-11-30]. https://pubmed.ncbi.nlm.nih.gov/31794832/. DOI: 10.1016/j.neuint.2019.104624.
|
55. |
|
56. |
Lenin R, Nagy PG, Jha KA, et al. GRP78 translocation to the cell surface and O-GlcNAcylation of VE-Cadherin contribute to ER stress-mediated endothelial permeability[J/OL]. Sci Rep, 2019, 9(1): 10783[2019-07-25]. https://pubmed.ncbi.nlm.nih.gov/31346222/. DOI: 10.1038/s41598-019-47246-w.
|
57. |
|
58. |
Li R, Yao G, Zhou L, et al. The ghrelin-GHSR-1a pathway inhibits high glucose-induced retinal angiogenesis in vitro by alleviating endoplasmic reticulum stress[J/OL]. Eye Vis (Lond), 2022, 9(1): 20[2022-07-07]. https://pubmed.ncbi.nlm.nih.gov/35668539/. DOI: 10.1186/s40662-022-00291-5.
|
59. |
|
60. |
Wu K, Zhou K, Zhao M, et al. TCF7L2 promotes ER stress signaling in diabetic retinopathy[J/OL]. Exp Eye Res, 2022, 221: 109142[2022-06-10]. https://pubmed.ncbi.nlm.nih.gov/35691375/. DOI: 10.1016/j.exer.2022.109142.
|
61. |
|
62. |
Wen Z, He X, Wang J, et al. Hyperlipidemia induces proinflammatory responses by activating STING pathway through IRE1α-XBP1 in retinal endothelial cells[J/OL]. J Nutr Biochem, 2023, 112: 109213[2022-11-09]. https://pubmed.ncbi.nlm.nih.gov/36370931/. DOI: 10.1016/j.jnutbio.2022.109213.
|
63. |
Yoo YM, Joo SS. Melatonin can modulate neurodegenerative diseases by regulating endoplasmic reticulum stress[J/OL]. Int J Mol Sci, 2023, 24(3): 2381[2023-01-25]. https://pubmed.ncbi.nlm.nih.gov/36768703/. DOI: 10.3390/ijms24032381.
|
64. |
|
65. |
|
66. |
|