1. |
Siah WF, Loughman J, O'Brien C. Lower macular pigment optical density in foveal-involved glaucoma[J]. Ophthalmology, 2015, 122(10): 2029-2037. DOI: 10.1016/j.ophtha.2015.06.028.
|
2. |
Hou H, Moghimi S, Proudfoot JA, et al. Ganglion cell complex thickness and macular vessel density loss in primary open-angle glaucoma[J]. Ophthalmology, 2020, 127(8): 1043-1052. DOI: 10.1016/j.ophtha.2019.12.030.
|
3. |
Rathke F, Schmidt S, Schnörr C. Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization[J]. Med Image Anal, 2014, 18(5): 781-794. DOI: 10.1016/j.media.2014.03.004.
|
4. |
Wolff B, Basdekidou C, Vasseur V, et al. Retinal inner nuclear layer microcystic changes in optic nerve atrophy: a novel spectral-domain OCT finding[J]. Retina, 2013, 33(10): 2133-2138. DOI: 10.1097/IAE.0b013e31828e68d0.
|
5. |
Gelfand JM, Nolan R, Schwartz DM, et al. Microcystic macular oedema in multiple sclerosis is associated with disease severity[J]. Brain, 2012, 135(Pt 6): 1786-1793. DOI: 10.1093/brain/aws098.
|
6. |
Burggraaff MC, Trieu J, de Vries-Knoppert WA, et al. The clinical spectrum of microcystic macular edema[J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 952-961. DOI: 10.1167/iovs.13-12912.
|
7. |
Gelfand JM, Cree BA, Nolan R, et al. Microcystic inner nuclear layer abnormalities and neuromyelitis optica[J]. JAMA Neurol, 2013, 70(5): 629-633. DOI: 10.1001/jamaneurol.2013.1832.
|
8. |
Sotirchos ES, Saidha S, Byraiah G, et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica[J]. Neurology, 2013, 80(15): 1406-1414. DOI: 10.1212/WNL.0b013e31828c2f7a.
|
9. |
Abegg M, Dysli M, Wolf S, et al. Microcystic macular edema: retrograde maculopathy caused by optic neuropathy[J]. Ophthalmology, 2014, 121(1): 142-149. DOI: 10.1016/j.ophtha.2013. 08.045.
|
10. |
Hasegawa T, Akagi T, Yoshikawa M, et al. Microcystic inner nuclear layer changes and retinal nerve fiber layer defects in eyes with glaucoma[J/OL]. PLoS One, 2015, 10(6): e0130175[2015-06-12]. https://pubmed.ncbi.nlm.nih.gov/26066021/ DOI: 10.1371/journal.pone.0130175.
|
11. |
Murata N, Togano T, Miyamoto D, et al. Clinical evaluation of microcystic macular edema in patients with glaucoma[J]. Eye (Lond), 2016, 30(11): 1502-1508. DOI: 10.1038/eye.2016.190.
|
12. |
Mahmoudinezhad G, Salazar D, Morales E, et al. Risk factors for microcystic macular oedema in glaucoma[J]. Br J Ophthalmol, 2023, 107(4): 505-510. DOI: 10.1136/bjophthalmol-2021-320137.
|
13. |
Wells-Gray EM, Choi SS, Slabaugh M, et al. Inner retinal changes in primary open-angle glaucoma revealed through adaptive optics-optical coherence tomography[J]. J Glaucoma, 2018, 27(11): 1025-1028. DOI: 10.1097/ijg.0000000000001039.
|
14. |
Kessel L, Hamann S, Wegener M, et al. Microcystic macular oedema in optic neuropathy: case series and literature review[J]. Clin Exp Ophthalmol, 2018, 46(9): 1075-1086. DOI: 10.1111/ceo.13327.
|
15. |
Xiao H, Liu Y, Guo N, et al. Clinical characteristics of microcystic macular edema in chronic primary angle-closure glaucoma and primary open-angle glaucoma patients[J]. Ophthalmic Res, 2024, 67(1): 145-153. DOI: 10.1159/000535900.
|
16. |
Abdelaal A, Eltaras MM, Katamesh BE, et al. The prevalence and presentation patterns of microcystic macular oedema: a systematic review and meta-analysis of 2128 glaucomatous eyes[J]. Eye (Lond), 2023, 37(16): 3322-3333. DOI: 10.1038/s41433-023-02524-w.
|
17. |
Wen JC, Freedman SF, El-Dairi MA, et al. Microcystic macular changes in primary open-angle glaucoma[J]. J Glaucoma, 2016, 25(3): 258-262. DOI: 10.1097/ijg.0000000000000129.
|
18. |
Deschênes MC, Descovich D, Moreau M, et al. Postmenopausal hormone therapy increases retinal blood flow and protects the retinal nerve fiber layer[J]. Invest Ophthalmol Vis Sci, 2010, 51(5): 2587-600. DOI: 10.1167/iovs.09-3710.
|
19. |
Brazerol J, Iliev ME, Höhn R, et al. Retrograde maculopathy in patients with glaucoma[J]. J Glaucoma, 2017, 26(5): 423-429. DOI: 10.1097/ijg.0000000000000633.
|
20. |
Leung CKS, Ye C, Weinreb RN, et al. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression[J]. Ophthalmology, 2013, 120(12): 2485-2492. DOI: 10.1016/j.ophtha.2013.07.021.
|
21. |
Holló G. The side effects of the prostaglandin analogues[J]. Expert Opin Drug Saf, 2007, 6(1): 45-52. DOI: 10.1517/14740338.6.1.45.
|
22. |
Holló G, Aung T, Cantor LB, et al. Cystoid macular edema related to cataract surgery and topical prostaglandin analogs: mechanism, diagnosis, and management[J]. Surv Ophthalmol, 2020, 65(5): 496-512. DOI: 10.1016/j.survophthal.2020.02.004.
|
23. |
Govetto A, Su D, Farajzadeh M, et al. Microcystoid macular changes in association with idiopathic epiretinal membranes in eyes with and without glaucoma: clinical insights[J]. Am J Ophthalmol, 2017, 181: 156-165. DOI: 10.1016/j.ajo.2017.06.023.
|
24. |
Zhang M, Mao GY, Ye C, et al. Association of peripheral anterior synechia, intraocular pressure, and glaucomatous optic neuropathy in primary angle-closure diseases[J]. Int J Ophthalmol, 2021, 14(10): 1533-1538. DOI: 10.18240/ijo.2021.10.09.
|
25. |
Nakazawa T, Fukuchi T. What is glaucomatous optic neuropathy?[J]. Jpn J Ophthalmol, 2020, 64(3): 243-249. DOI: 10.1007/s10384-020-00736-1.
|
26. |
Jung KI, Ryu HK, Oh SE, et al. Thicker inner nuclear layer as a predictor of glaucoma progression and the impact of intraocular pressure fluctuation[J/OL]. J Clin Med, 2024, 13(8): 2312[2024-04-17]. https://pubmed.ncbi.nlm.nih.gov/38673589/. DOI: 10.3390/jcm13082312.
|
27. |
El Maftouhi A, Quaranta-El Maftouhi M, Baudouin C, et al. Cystic maculopathy of the inner nuclear layer in glaucoma patients[J]. J Fr Ophtalmol, 2021, 44(6): 786-791. DOI: 10.1016/j.jfo.2020.11.010.
|
28. |
Hood DC. Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT)[J]. Prog Retin Eye Res, 2017, 57: 46-75. DOI: 10.1016/j.preteyeres.2016.12.002.
|
29. |
Francone A, Govetto A, Yun L, et al. Evaluation of non-exudative microcystoid macular abnormalities secondary to retinal vein occlusion[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 259(12): 3579-3588. DOI: 10.1007/s00417-021-05250-9.
|
30. |
Barboni P, Carelli V, Savini G, et al. Microcystic macular degeneration from optic neuropathy: not inflammatory, not trans-synaptic degeneration[J/OL]. Brain, 2013, 136(Pt 7): e239[2013-02-08]. https://pubmed.ncbi.nlm.nih.gov/23396580/. DOI: 10.1093/brain/awt014.
|
31. |
Lujan BJ, Horton JC. Microcysts in the inner nuclear layer from optic atrophy are caused by retrograde trans-synaptic degeneration combined with vitreous traction on the retinal surface[J/OL]. Brain, 2013, 136(Pt 11): e260[2013-07-19]. https://pubmed.ncbi.nlm.nih.gov/23872368/. DOI: 10.1093/brain/awt154.
|
32. |
Shinozaki Y, Koizumi S. Potential roles of astrocytes and Müller cells in the pathogenesis of glaucoma[J]. J Pharmacol Sci, 2021, 145(3): 262-267. DOI: 10.1016/j.jphs.2020.12.009.
|
33. |
Reichenbach A, Wurm A, Pannicke T, et al. Müller cells as players in retinal degeneration and edema[J]. Graefe's Arch Clin Exp Ophthalmol, 2007, 245(5): 627-36. DOI: 10.1007/s00417-006-0516-y.
|
34. |
Green AJ, McQuaid S, Hauser SL, et al. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration[J]. Brain, 2010, 133(Pt 6): 1591-601. DOI: 10.1093/brain/awq080.
|
35. |
Petzold A, Balcer LJ, Calabresi PA, et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis[J]. Lancet Neurol, 2017, 16(10): 797-812. DOI: 10.1016/s1474-4422(17)30278-8.
|
36. |
Lavery TCM, Rasmussen CA, Katz AW, et al. Development of microcystoid macular degeneration in the retina of nonhuman primates: time-course and associated pathologies[J]. Curr Eye Res, 2024, 18: 1-8. DOI: 10.1080/02713683.2024.2397028.
|