1. |
Verbakel SK, van Huet R, Boon C, et al. Non-syndromic retinitis pigmentosa[J]. Prog Retin Eye Res, 2018, 66: 157-186. DOI: 10.1016/j.preteyeres.2018.03.005.
|
2. |
Narayan DS, Wood JP, Chidlow G, et al. A review of the mechanisms of cone degeneration in retinitis pigmentosa[J]. Acta Ophthalmol, 2016, 94(8): 748-754. DOI: 10.1111/aos.13141.
|
3. |
Vingolo EM, Mascolo S, Miccichè F, et al. Retinitis pigmentosa: from pathomolecular mechanisms to therapeutic strategies[J/OL]. Medicina (Kaunas), 2024, 60(1): 189[2024-01-22]. https://pubmed.ncbi.nlm.nih.gov/38276069/. DOI: 10.3390/medicina60010189.
|
4. |
Bakondi B, Lv W, Lu B, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa[J]. Mol Ther, 2016, 24(3): 556-563. DOI: 10.1038/mt.2015.220.
|
5. |
Beltran WA, Cideciyan AV, Lewin AS, et al. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa[J]. Proc Natl Acad Sci USA, 2012, 109(6): 2132-2137. DOI: 10.1073/pnas.1118847109.
|
6. |
Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR[J]. Nat Med, 2020, 26(3): 354-359. DOI: 10.1038/s41591-020-0763-1.
|
7. |
Yu W, Mookherjee S, Chaitankar V, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice[J/OL]. Nat Commun, 2017, 8: 14716[2017-04-14]. https://pubmed.ncbi.nlm.nih.gov/28291770/. DOI: 10.1038/ncomms14716.
|
8. |
Ghazi NG, Abboud EB, Nowilaty SR, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial[J]. Hum Genet, 2016, 135(3): 327-343. DOI: 10.1007/s00439-016-1637-y.
|
9. |
Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[J]. Stem Cell Reports, 2018, 10(4): 1267-1281. DOI: 10.1016/j.stemcr.2018.02.003.
|
10. |
O'Reilly M, Palfi A, Chadderton N, et al. RNA interference-mediated suppression and replacement of human rhodopsin in vivo[J]. Am J Hum Genet, 2007, 81(1): 127-135. DOI: 10.1086/519025.
|
11. |
Macé E, Caplette R, Marre O, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice[J]. Mol Ther, 2015, 23(1): 7-16. DOI: 10.1038/mt.2014.154.
|
12. |
Pang JJ, Dai X, Boye SE, et al. Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa[J]. Mol Ther, 2011, 19(2): 234-242. DOI: 10.1038/mt.2010.273.
|
13. |
Millington-Ward S, Chadderton N, O'Reilly M, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa[J]. Mol Ther, 2011, 19(4): 642-649. DOI: 10.1038/mt.2010.293.
|
14. |
Confalonieri F, La Rosa A, Ottonelli G, et al. Retinitis pigmentosa and therapeutic approaches: a systematic review[J/OL]. J Clin Med, 2024, 13(16): 4680[2024-08-09]. https://pubmed.ncbi.nlm.nih.gov/39200821/. DOI: 10.3390/jcm13164680.
|
15. |
Cross N, van Steen C, Zegaoui Y, et al. Current and future treatment of retinitis pigmentosa[J]. Clin Ophthalmol, 2022, 16: 2909-2921. DOI: 10.2147/OPTH.S370032.
|
16. |
Lewin AS, Smith WC. Gene therapy for rhodopsin mutations[J/OL]. Cold Spring Harb Perspect Med, 2022, 12(9): a041283[2022-08-08]. https://pubmed.ncbi.nlm.nih.gov/35940643/. DOI: 10.1101/cshperspect.a041283.
|
17. |
Han J, Dinculescu A, Dai X, et al. Review: the history and role of naturally occurring mouse models with Pde6b mutations[J]. Mol Vis, 2013, 19: 2579-2589.
|
18. |
Pellissier LP, Quinn PM, Alves CH, et al. Gene therapy into photoreceptors and Müller glial cells restores retinal structure and function in CRB1 retinitis pigmentosa mouse models[J]. Hum Mol Genet, 2015, 24(11): 3104-3118. DOI: 10.1093/hmg/ddv062.
|
19. |
Boon N, Lu X, Andriessen CA, et al. AAV-mediated gene augmentation therapy of CRB1 patient-derived retinal organoids restores the histological and transcriptional retinal phenotype[J]. Stem Cell Reports, 2023, 18(5): 1123-1137. DOI: 10.1016/j.stemcr.2023.03.014.
|
20. |
Bellingrath JS, McClements ME, Shanks M, et al. Envisioning the development of a CRISPR-Cas mediated base editing strategy for a patient with a novel pathogenic CRB1 single nucleotide variant[J]. Ophthalmic Genet, 2022, 43(5): 661-670. DOI: 10.1080/13816810.2022.2073599.
|
21. |
Lopes da Costa B, Kolesnikova M, Levi SR, et al. Clinical and therapeutic evaluation of the ten most prevalent CRB1 mutations[J/OL]. Biomedicines, 2023, 11(2): 385[2023-01-27]. https://pubmed.ncbi.nlm.nih.gov/36830922/. DOI: 10.3390/biomedicines11020385.
|
22. |
Wongchaisuwat N, Amato A, Lamborn AE, et al. Retinitis pigmentosa GTPase regulator-related retinopathy and gene therapy[J]. Saudi J Ophthalmol, 2023, 37(4): 276-286. DOI: 10.4103/sjopt.sjopt_168_23.
|
23. |
Moore SM, Skowronska-Krawczyk D, Chao DL. Targeting of the NRL pathway as a therapeutic strategy to treat retinitis pigmentosa[J/OL]. J Clin Med, 2020, 9(7): 2224[2020-07-13]. https://pubmed.ncbi.nlm.nih.gov/32668775/. DOI: 10.3390/jcm9072224.
|
24. |
Schellens R, Broekman S, Peters T, et al. A protein domain-oriented approach to expand the opportunities of therapeutic exon skipping for USH2A-associated retinitis pigmentosa[J]. Mol Ther Nucleic Acids, 2023, 32: 980-994. DOI: 10.1016/j.omtn.2023.05.020.
|
25. |
Toms M, Toualbi L, Almeida PV, et al. Successful large gene augmentation of USH2A with non-viral episomal vectors[J]. Mol Ther, 2023, 31(9): 2755-2766. DOI: 10.1016/j.ymthe.2023.06.012.
|
26. |
Sanjurjo-Soriano C, Erkilic N, Baux D, et al. Genome editing in patient iPSCs corrects the most prevalent USH2A mutations and reveals intriguing mutant mRNA expression profiles[J]. Mol Ther Methods Clin Dev, 2020, 17: 156-173. DOI: 10.1016/j.omtm.2019.11.016.
|
27. |
Simunovic MP, Shen W, Lin JY, et al. Optogenetic approaches to vision restoration[J]. Exp Eye Res, 2019, 178: 15-26. DOI: 10.1016/j.exer.2018.09.003.
|
28. |
Piri N, Grodsky JD, Kaplan HJ. Gene therapy for retinitis pigmentosa[J]. Taiwan J Ophthalmol, 2021, 11(4): 348-351. DOI: 10.4103/tjo.tjo_47_21.
|
29. |
Peng YQ, Tang LS, Yoshida S, et al. Applications of CRISPR/Cas9 in retinal degenerative diseases[J]. Int J Ophthalmol, 2017, 10(4): 646-651. DOI: 10.18240/ijo.2017.04.23.
|
30. |
孙玺皓, 唐仕波, 陈建苏. CRISPR/Cas9基因编辑技术在遗传性视网膜疾病中的应用[J]. 中华实验眼科杂志, 2023, 41(9): 925-930. DOI: 10.3760/cma.j.cn115989-20201120-00787.Sun XH, Tang SB, Chen JS. Application of CRISPR/Cas9 genome editing technology in hereditary retinal diseases[J]. Chin J Exp Ophthalmol, 2023, 41(9): 925-930. DOI: 10.3760/cma.j.cn115989-20201120-00787.
|
31. |
Su J, She K, Song L, et al. In vivo base editing rescues photoreceptors in a mouse model of retinitis pigmentosa[J]. Mol Ther Nucleic Acids, 2023, 31: 596-609. DOI: 10.1016/j.omtn.2023.02.011.
|
32. |
Wu Y, Wan X, Zhao D, et al. AAV-mediated base-editing therapy ameliorates the disease phenotypes in a mouse model of retinitis pigmentosa[J/OL]. Nat Commun, 2023, 14(1): 4923[2023-08-15]. https://pubmed.ncbi.nlm.nih.gov/37582961/. DOI: 10.1038/s41467-023-40655-6.
|
33. |
李五一, 睢瑞芳. 反义寡核苷酸技术在遗传性视网膜变性治疗中的应用[J]. 中华实验眼科杂志, 2022, 40(1): 67-72. DOI: 10.3760/cma.j.cn115989-20210128-00074.Li WY, Sui RF. Application of antisense oligonucleotide in the treatment of inherited retinal dystrophy[J]. Chin J Exp Ophthalmol, 2022, 40(1): 67-72. DOI: 10.3760/cma.j.cn115989-20210128-00074.
|
34. |
Justin GA, Girach A, Maldonado RS. Antisense oligonucleotide therapy for proline- 23-histidine autosomal dominant retinitis pigmentosa[J]. Curr Opin Ophthalmol, 2023, 34(3): 226-231. DOI: 10.1097/ICU.0000000000000947.
|
35. |
Dulla K, Slijkerman R, van Diepen HC, et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations[J]. Mol Ther, 2021, 29(8): 2441-2455. DOI: 10.1016/j.ymthe.2021.04.024.
|
36. |
Leroy BP, Fischer MD, Flannery JG, et al. Gene therapy for inherited retinal disease: long-term durability of effect[J]. Ophthalmic Res, 2023, 66(1): 179-196. DOI: 10.1159/000526317.
|
37. |
Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN[J]. Hum Gene Ther, 2018, 29(3): 285-298. DOI: 10.1089/hum.2018.015.
|
38. |
Philippidis A. Fourth boy dies in clinical trial of Astellas' AT132[J]. Hum Gene Ther, 2021, 32(19-20): 1008-1010. DOI: 10.1089/hum.2021.29182.bfs.
|
39. |
陈姝颖, 傅秋黎, 姚克. 纳米材料应用于眼科治疗的研究进展[J]. 中华眼科杂志, 2022, 58(10): 831-838. DOI: 10.3760/cma.j.cn112142-20220130-00043.Chen SY, Fu QL, Yao K. Advances of nanomaterials applied in ophthalmic treatment[J]. Chin J Ophthalmol, 2022, 58(10): 831-838. DOI: 10.3760/cma.j.cn112142-20220130-00043.
|
40. |
汪枫桦, 陈洁琼, 孙晓东. 重视自然病程研究, 科学开展遗传性视网膜疾病的基因治疗[J]. 中华实验眼科杂志, 2021, 39(8): 665-669. DOI: 10.3760/cma.j.cn115989-20201007-00677.Wang FH, Chen JQ, Sun XD. Paying attention to the natural course of disease for a development of gene therapy of inherited retinal diseases[J]. Chin J Exp Ophthalmol, 2021, 39(8): 665-669. DOI: 10.3760/cma.j.cn115989-20201007-00677.
|