1. |
Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular diseases[J]. Prog Retin Eye Res, 2015, 49: 67-81. DOI: 10.1016/j.preteyeres.2015.06.002.
|
2. |
Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy[J]. N Engl J Med, 2012, 366(13): 1227-1239. DOI: 10.1056/nejmra1005073.
|
3. |
Gamm DM, Wright LS, Capowski EE, et al. Stem cell therapies and retinal disease: toward the next generation[J]. Invest Ophthalmol Vis Sci, 2018, 59(4): 87-96. DOI: 10.1167/iovs.18-23566.
|
4. |
马映雪, 何广辉, 高翔, 等. 人脐带间充质干细胞外泌体靶向miR-126调节高糖诱导的人视网膜血管内皮细胞中血管内皮生长因子-A的表达[J]. 中华眼底病杂志, 2024, 40(5): 372-378. DOI: 10.3760/cma.j.cn511434-20240108-00007.Ma YX, He GH, Gao X, et al. Human umbilical cord mesenchymal stem cell exosomes target miR-126 regulate the expression of vascular endothelial growth factor-A in high glucose-induced human retinal vascular endothelial cells[J]. Chin J Ocul Fundus Dis, 2024, 40(5): 372-378. DOI: 10.3760/cma.j.cn511434-20240108-00007.
|
5. |
Medina RJ, O’Neill CL, Humphreys MW, et al. Outgrowth endothelial cells: characterization and their potential for reversing ischemic retinopathy[J]. Invest Ophthalmol Vis Sci, 2010, 51(11): 5906-5913. DOI: 10.1167/iovs.09-4951.
|
6. |
Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy[J]. Nature, 2019, 565(7740): 505-510. DOI: 10.1038/s41586-018-0858-8.
|
7. |
Orlova VV, Drabsch Y, Freund C, et al. Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts[J]. Arterioscler Thromb Vasc Biol, 2014, 34(1): 177-186. DOI: 10.1161/atvbaha.113.302598.
|
8. |
Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nat Protoc, 7(3): 562-758. DOI: 10.1038/nprot.2012.016.
|
9. |
Huang YL, Pai FS, Tsou YT, et al. Human CLEC18 gene cluster contains C-type lectins with differential glycan-binding specificity[J]. J Biol Chem, 2015, 290(35): 21252-21263. DOI: 10.1074/jbc.m115.649814.
|
10. |
Guo RM, Zhao CB, Li P, et al. Overexpression of CLEC18B associates with the proliferation, migration, and prognosis of glioblastoma[J/OL]. ASN Neuro, 2018, 10: 1759091418781949[2018-01-01]. https://pubmed.ncbi.nlm.nih.gov/29914265/. DOI: 10.1177/1759091418781949.
|
11. |
Huang SN, Li GS, Zhou XG, et al. Identification of an immune score-based gene panel with prognostic power for oral squamous cell carcinoma[J/OL]. Med Sci Monit, 2020, 26: e922854[2020-06-12]. https://pubmed.ncbi.nlm.nih.gov/32529991/. DOI: 10.12659/MSM.922854.
|
12. |
Takebe N, Harris PJ, Warren RQ, et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways[J]. Nat Rev Clin Oncol, 2011, 8(2): 97-106. DOI: 10.1038/nrclinonc.2010.196.
|
13. |
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy[J]. Signal Transduct Target Ther, 2020, 5(1): 8. DOI: 10.1038/s41392-020-0110-5.
|
14. |
Cohen ED, Tian Y, Morrisey EE. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis, and progenitor self-renewal[J]. Development, 2008, 135(5): 789-798. DOI: 10.1242/dev.016865.
|
15. |
Nusse R, Clevers H. Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985-999. DOI: 10.1016/j.cell.2017.05.016.
|
16. |
Orlova VV, Drabsch Y, Freund C, et al. Wnt signaling promotes differentiation of human pluripotent stem cells to mesoderm and endoderm lineages while inhibiting neural differentiation[J]. Stem Cells, 2014, 32(10): 2651-2662. DOI: 10.1002/stem.1787.
|
17. |
Paik DT, Tian L, Lee J, et al. Large-scale single-cell transcriptomics reveals Wnt-mediated endothelial cell transformation during aortic dissection in mice[J]. J Clin Invest, 2020, 130(9): 4414-4428. DOI: 10.1172/JCI137582.
|
18. |
Ma S, Meng Z, Chen R, et al. The Hippo pathway: biology and pathophysiology[J]. Annu Rev Biochem, 2019, 88: 577-604. DOI: 10.1146/annurev-biochem-013118-111829.
|
19. |
Zhou Q, Li L, Zhao B, et al. The Hippo pathway in heart development, regeneration, and diseases[J]. Circ Res, 2015, 116(8): 1431-1447. DOI: 10.1161/CIRCRESAHA.116.303218.
|
20. |
Choi HJ, Zhang H, Park H, et al. Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2[J/OL]. Nat Commun, 2015, 6: 6943[2015-05-12]. https://pubmed.ncbi.nlm.nih.gov/25962877/. DOI: 10.1038/ncomms7943.
|
21. |
Aguilar JS, Hidalgo A, Lozano J, et al. Directed cardiomyogenesis of human pluripotent stem cells by modulating Wnt/β-catenin and BMP signalling with small molecules[J]. Biochem J, 2015, 469(2): 235-241. DOI: 10.1042/BJ20150245.
|
22. |
Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction[J]. Oncogene, 2004, 23(48): 7906-7909. DOI: 10.1038/sj.onc.1208160.
|
23. |
Boggon TJ, Eck MJ. Structure and regulation of Src family kinases[J]. Oncogene, 2004, 23(48): 7918-7927. DOI: 10.1038/sj.onc.1208081.
|
24. |
Meyn MA 3rd, Schreiner SJ, Dumitrescu TP, et al. SRC family kinase activity is required for murine embryonic stem cell growth and differentiation[J]. Mol Pharmacol, 2005, 68(5): 1320-1330. DOI: 10.1124/mol.104.010231.
|
25. |
Geijsen N. Epigenetic reprogramming: Prdm14 hits the accelerator[J]. EMBO J, 2012, 31(10): 2247-2248. DOI: 10.1038/emboj.2012.117.
|
26. |
Sybirna A, Tang WWC, Pierson Smela M, et al. A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons[J/OL]. Nat Commun, 2020, 11(1): 1282[2020-03-09]. https://pubmed.ncbi.nlm.nih.gov/32152282/. DOI: 10.1038/s41467-020-15042-0.
|
27. |
Ghosh A, Som A. RNA-Seq analysis reveals pluripotency-associated genes and their interaction networks in human embryonic stem cells[J/OL]. Comput Biol Chem, 2020, 85: 107239[2020-02-21]. https://pubmed.ncbi.nlm.nih.gov/32109853/. DOI: 10.1016/j.compbiolchem.2020.107239.
|
28. |
Atsaves V, Lekakis L, Drakos E, et al. The oncogenic JUNB/CD30 axis contributes to cell cycle deregulation in ALK+ anaplastic large cell lymphoma[J]. Br J Haematol, 2014, 167(4): 514-523. DOI: 10.1111/bjh.13079.
|
29. |
Lu Y, Wan Z, Zhang X, et al. PRDM14 inhibits 293T cell proliferation by influencing the G1/S phase transition[J]. Gene, 2016, 595(2): 180-186. DOI: 10.1016/j.gene.2016.09.039.
|
30. |
Bafaro E, Liu Y, Xu Y, et al. The emerging role of zinc transporters in cellular homeostasis and cancer[J/OL]. Signal Transduct Target Ther, 2017, 2: 17029[2017-07-28]. https://pubmed.ncbi.nlm.nih.gov/29218234/. DOI: 10.1038/sigtrans.2017.29.
|
31. |
Kong BY, Duncan FE, Que EL, et al. The inorganic anatomy of the mammalian preimplantation embryo and the requirement of zinc during the first mitotic divisions[J]. Dev Dyn, 2015, 244(8): 935-947. DOI: 10.1002/dvdy.24285.
|
32. |
Suetsugu S, Kurisu S, Takenawa T. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins[J]. Physiol Rev, 2014, 94(4): 1219-1248. DOI: 10.1152/physrev.00040.2013.
|
33. |
Ito K, Ito K. Metabolism and the control of cell fate decisions and stem cell renewal[J]. Annu Rev Cell Dev Biol, 2016, 32: 399-409. DOI: 10.1146/annurev-cellbio-111315-125134.
|