1. |
Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents:a review of literature[J]. Eye (Lond), 2013, 27(7):787-794.
|
2. |
Peters S, Heiduschka P, Julien S, et al. Ultrastructural findings in the primate eye after intravitreal injection of bevacizumab[J]. Am J Ophthalmol, 2007, 143(6):995-1002.
|
3. |
Inan UU, Avci B, Kusbeci T, et al. Preclinical safety evaluation of intravitreal injection of full-length humanized vascular endothelial growth factor antibody in rabbit eyes[J]. Invest Ophthalmol Vis Sci, 2007, 48(4):1773-1781.
|
4. |
Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA[J]. Nature, 2004, 431(7006):343-349.
|
5. |
张丽娟, 张琰, 东莉洁, 等. MicroRNA在眼部的表达及其功能[J].中华眼科杂志, 2012, 48(12):1136-1140.
|
6. |
Smith LE, Wesolowski E, Mclellan A, et al. Oxygen-induced retinopathy in the mouse[J]. Invest Ophthalmol Vis Sci, 1994, 35(1):101-111.
|
7. |
Li S, Li T, Luo Y, et al. Retro-orbital injection of FITC-dextran is an effective and economical method for observing mouse retinal vessels[J]. Mol Vis, 2011, 17:3566-3573.
|
8. |
Browning J, Wylie CK, Gole G. Quantification of oxygen-induced retinopathy in the mouse[J]. Invest Ophthalmol Vis Sci, 1997, 38(6):1168-1174.
|
9. |
黎智, 贺涛, 杜珂, 等.15-脂氧合酶-1基因转移抑制小鼠视网膜新生血管的实验研究[J].中华眼底病杂志, 2013, 29(4):406-410.
|
10. |
Recchia FM, Xu L, Penn JS, et al. Identification of genes and pathways involved in retinal neovascularization by microarray analysis of two animal models of retinal angiogenesis[J]. Invest Ophthalmol Vis Sci, 2010, 51(2):1098-1105.
|
11. |
Connor KM, Krah NM, Dennison RJ, et al. Quantification of oxygen-induced retinopathy in the mouse:a model of vessel loss, vessel regrowth and pathological angiogenesis[J]. Nat Protoc, 2009, 4(11):1565-1573.
|
12. |
Ishikawa K, Yoshida S, Kadota K, et al. Gene expression profile of hyperoxic and hypoxic retinas in a mouse model of oxygen-induced retinopathy[J]. Invest Ophthalmol Vis Sci, 2010, 51(8):4307-4319.
|
13. |
Pinter R, Hindges R. Perturbations of microRNA function in mouse dicer mutants produce retinal defects and lead to aberrant axon pathfinding at the optic chiasm. PLoS One, 2010, 5(4):10021. http://dx.plos.org/10.1371/journal.pone.0010021.
|
14. |
Mellios N, Sugihara H, Castro J, et al. miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity[J]. Nat Neurosci, 2011, 14(10):1240-1242.
|
15. |
Ramachandran R, Fausett BV, Goldman D. Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway[J]. Nat Cell Biol, 2010, 12(11):1101-1107.
|
16. |
Kovacs B, Lumayag S, Cowan C, et al. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats[J]. Invest Ophthalmol Vis Sci, 2011, 52(7):4402-4409.
|
17. |
Silva VA, Polesskaya A, Sousa TA, et al. Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats[J]. Mol Vis, 2011, 17:2228-2240.
|
18. |
Xu S, Witmer PD, Lumayag S, et al. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster[J]. J Biol Chem, 2007, 282(34):25053-25066.
|
19. |
Shen J, Yang X, Xie B, et al. MicroRNAs regulate ocular neovascularization[J]. Mol Ther, 2008, 16(7):1208-1216.
|
20. |
Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
|
21. |
黄昌发, 刘小珊.微RNA miR-29与人类疾病[J].生命的化学, 2010, 30(2):250-255.
|
22. |
Loscher CJ, Hokamp K, Kenna PF, et al. Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa. Genome Biol, 2007, 8(11):R248.http://europepmc.org/articles/PMC2258196;jsessionid=EK4OA4yCA3Eird3RxA7p.0.
|
23. |
Luna C, Li G, Qiu J, et al. Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress[J]. Mol Vis, 2009, 15:2488-2497.
|
24. |
Yang H, Fang F, Chang R, et al. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor beta receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma[J]. Hepatology, 2013, 58(1):205-217.
|
25. |
Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development[J]. Science, 2005, 309(5732):310-311.
|
26. |
Jang E, Albadawi H, Watkins MT, et al. Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)-induced proliferation, migration, and neovascularization of ischemic muscle[J]. Proc Natl Acad Sci USA, 2012, 109(5):1679-1684.
|
27. |
Shin YJ, Hyon JY, Choi WS, et al. Chemical injury-induced corneal opacity and neovascularization reduced by rapamycin via TGF-beta1/ERK pathways regulation[J]. Invest Ophthalmol Vis Sci, 2013, 54(7):4452-4458.
|