1. |
Vemulakonda GA, Hariprasad SM, Mieler WF, et al.Aqueous and vitreous concentrations following topical administration of 1% voriconazole in humans[J]. Arch Ophthalmol, 2008, 126(1):18-22.
|
2. |
Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery[J]. Expert Opin Drug Del, 2004, 1(1):99-114.
|
3. |
Anderson OA, Jackson TL, Singh JK, et al. Human transscleral albumin permeability and the effect of topographical location and donor age[J]. Invest Ophthalmol Vis Sci, 2008, 49(9):4041-4045.
|
4. |
Nan K, Sun S, Li Y, et al.Characterisation of systemic and ocular drug level of triamcinolone acetonide following a single sub-Tenon injection[J].Br J Ophthalmol, 2010, 94(5):654-658.
|
5. |
Shen L, You Y, Sun S, et al.Intraocular and systemic pharmacokinetics of triamcinolone acetonide after a single 40-mg posterior subtenon application[J]. Ophthalmology, 2010, 117(12):2365-2371.
|
6. |
Ambati J, Canakis CS, Miller JW, et al. Diffusion of high molecular weight compounds through sclera[J]. Invest Ophthalmol Vis Sci, 2000, 41(5):1181-1185.
|
7. |
Kansara V, Mitra AK.Evaluation of an ex vivo model implication for carrier-mediated retinal drug delivery[J]. Curr Eye Res, 2006, 31(5):415-426.
|
8. |
Cheruvu NP, Kompella UB.Bovine and porcine transscleral solute transport:influence of lipophilicity and the Choroid-Bruch's layer[J]. Invest Ophthalmol Vis Sci, 2006, 47(10):4513-4522.
|
9. |
Hillenkamp J, Hussain AA, Jackson TL, et al.The influence of path length and matrix components on ageing characteristics of transport between the choroid and the outer retina[J]. Invest Ophthalmol Vis Sci, 2004, 45(5):1493-1498.
|
10. |
Kadam RS, Tyagi P, Edelhauser HF, et al.Influence of choroidal neovascularization and biodegradable polymeric particle size on transscleral sustained delivery of triamcinolone acetonide[J]. Int J Pharm, 2012, 434(1-2):140-147.
|
11. |
Pitkänen L, Ranta VP, Moilanen H, et al.Permeability of retinal pigment epithelium:effects of permeant molecular weight and lipophilicity[J]. Invest Ophthalmol Vis Sci, 2005, 46(2):641-646.
|
12. |
Hu DN, Simon JD, Sarna T.Role of ocular melanin in ophthalmic physiology and pathology[J]. Photochem Photobiol, 2008, 84(3):639-644.
|
13. |
Cheruvu NP, Amrite AC, Kompella UB. Effect of eye pigmentation on transscleral drug delivery[J].Invest Ophthalmol Vis Sci, 2008, 49(1):333-341.
|
14. |
Du W, Sun S, Xu Y, et al.The effect of ocular pigmentation on transscleral delivery of triamcinolone acetonide[J]. J Ocul Pharmacol Ther, 2013, 29(7):633-638.
|
15. |
Rudnick DE, Noonan JS, Geroski DH, et al.The effect of intraocular pressure on human and rabbit scleral permeability[J].Invest Ophthalmol Vis Sci, 1999, 40(12):3054-3058.
|
16. |
Cruysberg LP, Nuijts RM, Geroski DH, et al. The influence of intraocular pressure on the transscleral diffusion of high-molecular-weight compounds[J].Invest Ophthalmol Vis Sci, 2005, 46(10):3790-3794.
|
17. |
Duvvuri S, Gandhi MD, Mitra AK.Effect of P-glycoprotein on the ocular disposition of a model substrate, quinidine[J]. Curr Eye Res, 2003, 27(6):345-353.
|
18. |
Attar M, Shen J, Ling KH, et al.Ophthalmic drug delivery considerations at the cellular level:drug-metabolising enzymes and transporters[J].Expert Opin Drug Deliv, 2005, 2:891-908.
|
19. |
Kumar G.Drug metabolizing enzyme systems in the eye[M]//Leino M, Urtti A.Ocular therapeutics and drug delivery:a multi-disciplinary approach. Indra K. Reddy:Lancaster, Technomic Publishing Company, 1996:149-167.
|
20. |
Kim JW, Lindsey JD, Wang N, et al.Increased human scleral permeability with prostaglandin exposure[J].Invest Ophthalmol Vis Sci, 2001, 42(7):1514-1521.
|
21. |
Shen L, Mao J, Chen Y, et al. Transscleral permeation of subtenon triamcinolone in different vitreoretinal diseases[J]. Ophthalmology, 2015, 122(3):649-651.
|
22. |
Cellini M, Pazzaglia A, Zamparini E, et al. Intravitreal vs. subtenon triamcinolone acetonide for the treatment of diabetic cystoid macular edema[J]. BMC Ophthalmol, 2008, 8:5.
|
23. |
Thakur A, Kadam RS, Kompella UB. Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids[J]. Drug Metab Dispos, 2011, 39(5):771-781.
|
24. |
Kadam RS, Cheruvu NP, Edelhauser HF, et al. Sclera-choroid-RPE transport of eight beta-blockers in human, bovine, porcine, rabbit, and rat models[J]. Invest Ophthalmol Vis Sci, 2011, 52(8):5387-5399.
|
25. |
Krishnadev N, Forooghian F, Cukras C, et al. Subconjunctival sirolimus in the treatment of diabetic macular edema[J]. Graefe's Arch Clin Exp Ophthalmol, 2011, 249(11):1627-1633.
|
26. |
Bochot A, Fattal E, Boutet V, et al. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes[J].Invest Ophthalmol Vis Sci, 2002, 43 (1):253-259.
|
27. |
Kim S, Kim JH, Jeon O, et al. Engineered polymers for advanced drug delivery[J]. Eur J Pharm Biopharm, 2009, 71(3):420-430.
|
28. |
Kim YM, Lim JO, Kim HK, et al. A novel design of one-side coated biodegradable intrascleral implant for the sustained release of triamcinolone acetonide[J]. Eur J Pharm Biopharm, 2008, 70(1):179-186.
|
29. |
Meng Y, Sun S, Li J, et al.Sustained release of triamcinolone acetonide from an episcleral plaque of multilayered poly-epsilon-caprolactone matrix[J].Acta biomaterialia, 2014, 10(1):126-133.
|
30. |
Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration[J]. J Pharm Pharmacol, 2005, 57(12):1555-1563.
|
31. |
Ayalasomayajula SP, Kompella UB. Retinal delivery of celecoxib is several-fold higher following subconjunctival administration compared to systemic administration[J]. Pharm Res, 2004, 21(10):1797-1804.
|
32. |
Ayalasomayajula SP, Kompella UB. Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model[J]. Eur J Pharmacol, 2005, 511(2-3):191-198.
|
33. |
Booth BA, Vidal Denham L, Bouhanik S, et al. Sustained-release ophthalmic drug delivery systems for treatment of macular disorders:present and future applications[J]. Drugs Aging, 2007, 24(7):581-602.
|
34. |
Lin CC, Metters AT. Hydrogels in controlled release formulations:network design and mathematical modeling[J]. Adv Drug Deliv Rev, 2006, 58(12-13):1379-1408.
|
35. |
Raiskup-Wolf F, Eljarrat-Binstock E, Rehak M, et al.Transcorneal and transscleral iontophoresis of the dexamethasone phosphate into the rabbit eye[J]. Cesk Slov Oftalmol, 2007, 63(5):360-368.
|
36. |
Eljarrat-Binstock E, Orucov F, Frucht-Pery J, et al. Methylprednisolone delivery to the back of the eye using hydrogel iontophoresis[J]. J Ocul Pharmacol Ther, 2008, 24(3):344-350.
|
37. |
Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease:emphasis on transscleral iontophoresis[J]. Adv Drug Deliv Rev, 2005, 57(14):2063-2079.
|
38. |
Tsutsui JM, Grayburn PA, Xie F, et al.Drug and gene delivery and enhancement of thrombolysis using ultrasound and microbubbles[J].Cardiol Clin, 2004, 22(2):299-312.
|
39. |
Mayer CR, Geis NA, Katus HA., et al. Ultrasound targeted microbubble destruction for drug and gene delivery[J]. Expert Opin Drug Deliv, 2008, 5(10):1121-1138.
|
40. |
Chen ZY, Yang F, Lin Y, et al. New development and application of ultrasound targeted microbubble destruction in gene therapy and drug delivery[J]. Curr Gene Ther, 2013, 13(4):250-274.
|
41. |
Patel SR, Lin AS, Edelhauser HF, et al. Suprachoroidal drug delivery to the back of the eye using hollow microneedles[J]. Pharm Res, 2011, 28(1):166-176.
|
42. |
Kadam RS, Williams J, Tyagi P, et al. Suprachoroidal delivery in a rabbit ex vivo eye model:influence of drug properties, regional differences in delivery, and comparison with intravitreal and intracameral routes[J]. Mol Vis, 2013, 19:1198-1210.
|
43. |
Patel SR, Berezovsky DE, McCarey BE, et al.Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye[J]. Invest Ophthalmol Vis Sci, 2012, 53(8):4433-4441.
|
44. |
Chen M, Li X, Liu J, et al.Safety and pharmacodynamics of suprachoroidal injection of triamcinolone acetonide as a controlled ocular drug release model[J]. J Control Release, 2015, 203:109-117.
|
45. |
Gu B, Liu J, Li X, et al. Real time monitoring of suprachoroidal space by ultra-high resolution Optical Coherence Tomography (UHR-OCT) in guinea pig eyes[J]. Inves Ophthalmol Vis Sci, 2015, In Press.
|
46. |
李杰, 兰碧菲, 赵春晖, 等.灰兔眼巩膜厚度测量[J].中华眼视光学与视觉科学杂志, 2013, 15(9):551-554.
|
47. |
Serpe L, Canaparo R, Foglietta F, et al. Innovative formulations for the controlled and site-specific delivery of antiinflammatory drugs[J]. Curr Pharm Des, 2013, 19(41):7219-7236.
|
48. |
Kovacs K, Wagley S, Quirk MT, et al. Pharmacokinetic study of vitreous and serum concentrations of triamcinolone acetonide after posterior sub-tenon's injection[J]. Am J Ophthalmol, 2012, 153(5):939-948.
|