1. |
Wolf P. The nature and significance of platelet products in human plasma[J]. Br J Haematol,1967, 13(3): 269-288.
|
2. |
He Z, Tang Y, Qin C,et al. Increased circulating leukocyte-derived microparticles in ischemic cerebrovascular disease[J]. Thromb Res,2017, 154: 19-25. DOI: 10.1016/j.thromres.2017.03.025.
|
3. |
Shustova ON, Antonova OA, Golubeva NV, et al. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: impact of active tissue factor[J]. Blood Coagul Fibrinolysis, 2017, 28(5): 373-382. DOI: 10.1097/MBC.0000000000000609.
|
4. |
Dean WL, Lee MJ, Cummins TD, et al. Proteomic and functional characterisation of platelet microparticle size classes[J]. Thromb Haemost, 2009, 102(4): 711-718. DOI: 10.1160/TH09-04-243.
|
5. |
György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles[J]. Cell Mol Life Sci, 2011, 68(16): 2667-2688. DOI: 10.1007/s00018-011-0689-3.
|
6. |
Tian Y, Salsbery B, Wang M, et al. Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury[J]. Blood, 2015, 125(13): 2151-2159. DOI: 10.1182/blood-2014-09-598805.
|
7. |
Chahed S, Leroyer AS, Benzerroug M, et al. Increased vitreous shedding of microparticles in proliferative diabetic retinopathy stimulates endothelial proliferation[J]. Diabetes, 2010, 59(3): 694-701. DOI: 10.2337/db08-1524.
|
8. |
Ogata N, Nomura S, Shouzu A, et al. Elevation of monocyte-derived microparticles in patients with diabetic retinopathy[J]. Diabetes Res Clin Pract, 2006, 73(3): 241-248.
|
9. |
Tumahai P, Saas P, Ricouard F, et al. Vitreous microparticle shedding in retinal detachment: a prospective comparative study[J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 40-46. DOI: 10.1167/iovs.15-17446.
|
10. |
Gelderman MP, Simak J. Flow cytometric analysis of cell membrane microparticles[J]. Methods Mol Biol, 2008, 484: 79-93. DOI: 10.1007/978-1-59745-398-1_6.
|
11. |
Jimenez JJ, Jy W, Mauro LM, et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis[J]. Thromb Res, 2003, 109(4): 175-180.
|
12. |
Distler JHW, Pisetsky DS, Huber LC, et al. Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases[J]. Arthritis Rheum, 2005, 52(11): 3337-3348.
|
13. |
Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases[J]. Nat Rev Rheumatol, 2010, 6(1): 21-29. DOI: 10.1038/nrrheum.2009.229.
|
14. |
Mause SF, Weber C. Microparticles protagonists of a novel communication network for intercellular information exchange[J]. Circ Res, 2010, 107(9): 1047-1057. DOI: 10.1161/CIRCRESAHA.110.226456.
|
15. |
Liu S, Wei L, Zhang Y, et al. Procoagulant activity and cellular origin of microparticles in human amniotic fluid[J]. Thromb Res, 2014, 133(4): 645-651. DOI: 10.1016/j.thromres.2013.12.043.
|
16. |
Georgescu A, Alexandru N, Andrei E, et al. Effects of transplanted circulating endothelial progenitor cells and platelet microparticles in atherosclerosis development[J]. Biol Cell, 2016, 108(8): 219-243. DOI: 10.1111/boc.201500104.
|
17. |
Aung HH, Tung JP, Dean MM, et al. Procoagulant role of microparticles in routine storage of packed red blood cells: potential risk for prothrombotic post-transfusion complications[J]. Pathology, 2016, 49(1): 62-69. DOI: 10.1016/j.pathol.2016.10.001.
|
18. |
Liu Y, He Z, Zhang Y, et al. Dissimilarity of increased phosphatidylserine-positive microparticles and associated coagulation activation in acute coronary syndromes[J]. Coron Artery Dis, 2016, 27(5): 365-375. DOI: 10.1097/MCA.0000000000000368.
|
19. |
Sinauridze EI, Kireev DA, Popenko NY, et al. Platelet microparticle membranes have 50-to 100-fold higher specific procoagulant activity than activated platelets[J]. Thromb Haemost, 2007, 97(3): 425-434.
|
20. |
Chen VM, Ahamed J, Versteeg HH, et al. Evidence for activation of tissue factor by an allosteric disulfide bond[J]. Biochemistry, 2006, 45(39): 12020-12028.
|
21. |
Holme PA, Solum NO, Brosstad F, et al. Microvesicles bind soluble fibrinogen, adhere to immobilized fibrinogen and coaggregate with platelets[J]. Thromb Haemost, 1998, 79(2): 389-394.
|
22. |
Empana JP, Boulanger CM, Tafflet M, et al. Microparticles and sudden cardiac death due to coronary occlusion. The TIDE (Thrombus and Inflammation in sudden DEath) study[J]. Eur Heart J Acute Cardiovasc Care, 2015, 4(1): 28-36. DOI: 10.1177/2048872614538404.
|
23. |
Sáenz-Cuesta M, Irizar H, Castillo-Triviño T, et al. Circulating microparticles reflect treatment effects and clinical status in multiple sclerosis[J]. Biomark Med, 2014, 8(5): 653-661. DOI: 10.2217/bmm.14.9.
|
24. |
Mallat Z, Hugel B, Ohan J, et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity[J]. Circulation, 1999, 99(3): 348-353.
|
25. |
Guiducci S, Distler JH, Jungel A, et al. Elevated numbers of microparticles in the blood of patients with systemic sclerosis[J]. Arthritis Rheum, 2005, 52(2): 461-465.
|
26. |
Nauta AJ, Trouw LA, Daha MR, et al. Direct binding of C1q to apoptotic cells and cell blebs induces complement activation[J]. Eur J Immunol, 2002, 32(6): 1726-1736.
|
27. |
Distler JH, Huber LC, Gay S, et al. Microparticles as mediators of cellular cross-talk in inflammatory disease[J]. Autoimmunity, 2006, 39(8): 683-690.
|
28. |
Saas P, Angelot F, Bardiaux L, et al. Phosphatidylserine-expressing cell by-products in transfusion: a pro-inflammatory or an anti-inflammatory effect?[J]. Transfus Clin Biol, 2012,19(3): 90-97. DOI: 10.1016/j.tracli.2012.02.002.
|
29. |
Żmigrodzka M, Guzera M, Miśkiewicz A, et al. The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression[J]. Tumour Biol, 2016, 37(11): 1-11. DOI: 10.1007/s13277-016-5358-6.
|
30. |
Gong J, Jaiswal R, Dalla P, et al. Microparticles in cancer: a review of recent developments and the potential for clinical application[J]. Semin Cell Dev Biol, 2015, 40: 35-40. DOI: 10.1016/j.semcdb.2015.03.009.
|
31. |
Poste G, Nicolson GL. Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells[J]. Proc Natl Acad Sci USA, 1980, 77(1): 399-403.
|
32. |
Muralidharan-Chari V, Clancy JW, Sedgwick A, et al. Microvesicles: mediators of extracellular communication during cancer progression[J]. J Cell Sci, 2010, 123(10): 1603-1611. DOI: 10.1242/jcs.064386.
|
33. |
Kowluru RA, Kowluru A, Mishra M, et al. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy[J]. Prog Retin Eye Res, 2015, 48(1-5): 40-61. DOI: 10.1016/j.preteyeres.2015.05.001.
|
34. |
Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis?[J]. Eye, 2009, 23(7): 1496-1508. DOI: 10.1038/eye.2009.108.
|
35. |
Stefánsson E. Ocular oxygenation and the treatment of diabetic retinopathy[J]. Surv Ophthalmol, 2006, 51(4): 364-380.
|
36. |
Chen E, Park CH. Use of intravitreal bevacizumab as a preoperative adjunct for tractional retinal detachment repair in severe proliferative diabetic retinopathy[J]. Retina, 2006, 26(6): 699-700.
|
37. |
Rangasamy S, McGuire PG, Franco Nitta C, et al. Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the bloodretinal barrier in diabetic retinopathy[J/OL]. PLoS One, 2014, 9(10): 108508[2014-10-20]. http://dx.plos.org/10.1371/journal.pone.0108508. DOI: 10.1371/journal.pone.0108508.
|
38. |
Moschos MM, Pantazis P, Gatzioufas Z, et al. Association between platelet activating factor acetylhydrolase and diabetic retinopathy: does inflammation affect the retinal status?[J]. Prostaglandins Other Lipid Mediat, 2016, 122: 699-700. DOI: 10.1016/j.prostaglandins.2016.01.001.
|
39. |
Mao H, Seo SJ, Biswal MR, et al. Mitochondrial oxidative stress in the retinal pigment epithelium leads to localized retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4613-4627. DOI: 10.1167/iovs.14-14633.
|
40. |
Ambati J, Atkinson JP, Gelfand BD. Immunology of age-related macular degeneration[J]. Nat Rev Immunol, 2013, 13(6): 438-451. DOI: 10.1038/nri3459.
|
41. |
Rickman CB, Farsiu S, Toth CA, et al. Dry age-related macular degeneration: mechanisms, therapeutic targets, and imaging[J]. Invest Ophthalmol Vis Sci, 2013, 54(14): 68-80. DOI: 10.1167/iovs.13-12757.
|
42. |
Payne AJ, Kaja S, Naumchuk Y, et al. Antioxidant drug therapy approaches for neuroprotection in chronic diseases of the retina[J]. Int J Mol Sci, 2014, 15(2): 1865-1886. DOI: 10.3390/ijms15021865.
|
43. |
Carver KA, Yang D. N-Acetylcysteine amide protects against oxidative stress–induced microparticle release from human retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci, 2016, 57(2): 360-371. DOI: 10.1167/iovs.15-17117.
|
44. |
Carver KA, Lin CM, Bowes RC, et al. Lack of the P2X7 receptor protects against AMD-like defects and microparticle accumulation in a chronic oxidative stress-induced mouse model of AMD[J]. Biochem Biophys Res Commun, 2016, 482(1): 81-86. DOI: 10.1016/j.bbrc.2016.10.140.
|
45. |
Tahiri H, Omri S, Yang C, et al. Lymphocytic microparticles modulate angiogenic properties of macrophages in laser-induced choroidal neovascularization[J/OL]. Sci Rep, 2016, 6: 37391[2016-11-22]. http://dx.doi.org/10.1038/srep37391. DOI: 10.1038/srep37391.
|
46. |
Murakami Y, Notomi S, Hisatomi T, et al. Photoreceptor cell death and rescue in retinal detachment and degenerations[J]. Prog Retin Eye Res, 2013, 37(12): 114-140. DOI: 10.1016/j.preteyeres.2013.08.001.
|
47. |
Nakazawa T, Hisatomi T, Nakazawa C, et al. Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis[J]. Proc Natl Acad Sci USA, 2007, 104(7): 2425-2430.
|
48. |
Aerts I, Lumbrosole RL, Gauthiervillars M, et al. Retinoblastoma update[J]. Arch Pediatr, 2016, 23(1): 112-116. DOI: 10.1016/j.arcped.2015.09.025.
|
49. |
Qiu Q, Yang C, Wei X, et al. SYK is a target of lymphocyte-derived microparticles in the induction of apoptosis of human retinoblastoma cells[J]. Apoptosis, 2015, 5(12): 1-10. DOI: 10.1007/s10495-015-1177-2.
|
50. |
Yang C, Xiong W, Qiu Q, et al. Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles[J]. Am J Physiol Regul Integr Comp Physiol, 2012, 302(8): 941-949. DOI: 10.1152/ajpregu.00527.2011.
|
51. |
Mejía JC, Ortiz T, Tàssies D, et al. Procoagulant microparticles are increased in patients with Behçet’s disease but do not define a specific subset of clinical manifestations[J]. Clin Rheumatol, 2016, 35(3): 695-699. DOI: 10.1007/s10067-015-2903-4.
|
52. |
Khan E, Ambrose NL, Ahnström J, et al. A low balance between microparticles expressing tissue factor pathway inhibitor and tissue factor is associated with thrombosis in Behçet’s syndrome[J/OL]. Sci Rep, 2016, 6: 38104[2016-012-07]. http://dx.doi.org/10.1038/srep38104. DOI: 10.1038/srep38104.
|