1. |
Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy[J/OL]. Exp Diabetes Res, 2007, 2007: 43603[2007-02-08].http://dx.doi.org/10.1155/2007/43603.DOI: 10.1155/2007/43603.
|
2. |
Dinkova-kostova AT, Wang XJ. Induction of the keap1/nrf2/are pathway by oxidizable diphenols[J]. Chem Biol Interact, 2011, 192(1-2): 101-106.DOI: 10.1016/j.cbi.2010.09.010.
|
3. |
Reiter C. E. Gardner T. W. Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy. Prog. Retin[J]. Eye Res, 2003, 22: 545-562.
|
4. |
Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream[J]. Cell, 2007, 129: 1261-1274. DOI: 10.1016/j.cell.2007.06.009.
|
5. |
del Peso L, González-García M, Page C, et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt[J]. Science, 1997, 278: 687-689.
|
6. |
Fletcher JI, Huang DC. Controlling the cell death mediators Bax and Bak: puzzles and conundrums[J]. Cell Cycle, 2008, 7: 39-44. DOI: 10.4161/cc.7.1.5178.
|
7. |
Steelman LS, Abrams SL, Whelan J, et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia[J]. Leukemia, 2008, 22: 686-707. DOI: 10.1038/leu.2008.26.
|
8. |
Kang KW, Lee SJ, Park JW, et al. Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress[J]. Mol Pharmacol, 2002, 62(5): 1001-1010.
|
9. |
Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult[J]. J Neurosci, 2004, 24(5): 1101-1112. DOI: 10.1523/JNEUROSCI.3817-03.2004.
|
10. |
田敏, 张思远, 韩佩晏, 等.叔丁基对苯二酚激活Nrf2信号通路增强对2型糖尿病大鼠视网膜的保护作用[J].眼科新进展, 2017, 37(3): 220-224.DOI: 10.13389/j.cnki.rao.2017.0056.Tian M, Zhang SY, Han PY, et al.tBHQ activates Nrf2 signaling pathways to enhance retinal protection in type 2 diabetic rats[J].Rec Adv Ophthalmol, 2017, 37(3): 220-224. DOI: 10.13389/j.cnki.rao.2017.0056.
|
11. |
张思远, 田敏, 李晶艳, 等.tBHQ对2型糖尿病大鼠视网膜HO-1、VEGF表达及胰岛功能作用的研究[J].中华眼科杂志, 2016, 52(5): 373-381. DOI: 10.3760/cma.j.issn.0412-4081.2016.05.012.Zhang SY, Tian M, Li JY, et al.Influence of tert-butylhydroquinone on the islets function and expression of HO-1 and VEGF in retina of type 2 diabetic rats[J].Chin J Ophthalmol, 2016, 52(5): 373-381.DOI: 10.3760/cma.j.issn.0412-4081.2016.05.012.
|
12. |
韩佩晏, 张思远, 李晶艳, 等.叔丁基对苯二酚对2型糖尿病大鼠视网膜细胞的保护作用及其机制[J].中华实验眼科杂志, 2016, 34(6): 496-502. DOI: 10.3760/cma.j.issn.2095-0160.2016.06.004.Han PY, Zhang SY, Li JY, et al.Protecting effects and mechanism of tert-butyl hydroquinone on retinal cells in type 2 diabetic rats[J].Chin J Exp Ophthalmo, 2016, 34(6): 496-502. DOI: 10.3760/cma.j.issn.2095-0160.2016.06.004.
|
13. |
李晶艳, 田敏, 张思远, 等.叔丁基对苯二酚对2型糖尿病大鼠视网膜核因子E2相关因子、血红素氧合酶1表达的影响[J].中华眼底病杂志, 2015, 31 (6): 581-585. DOI: 10.3760/cma.j.issn.1005-1015.2015.06.017.Li JH, Tian M, Zhang SY, et al.The influence of tert-butyl hydroquinone on retinal nuclear factor E2-related factor 2 and heme oxygenase-1 in type 2 diabetic rats[J].Chin J Ocul Fundus Dis, 2015, 31(6): 581-585.DOI: 10.3760/cma.j.issn.1005-1015.2015.06.017.
|
14. |
Han N, Yu L, Song Z, et al. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition[J]. Mol Med Rep, 2015, 12(1): 1098-1106.DOI: 10.3892/mmr.2015.3540.
|
15. |
Shih AY, Li P, Murphy TH. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo[J]. J Neurosci, 2005, 25(44): 10321-10335.DOI: 10.1523/JNEUROSCI.4014-05.2005.
|
16. |
宋明霞, 谢学军, 万李, 等.高糖及糖基化终末产物对视网膜Müller细胞缺氧诱导因子-1α介导缺氧信号通路的影响[J]. 眼科新进展, 2013, 33(12): 1101-1105.Song MX, Xie XJ, Wan Li, et al.Effects of high glucose and AGEs on hypoxia signal pathway mediated by HIF-1α of retinal Müller cells[J].Rec Adv Ophthalmol, 2013, 33(12): 1101-1105.
|
17. |
郭敬, 柯敏, 文小凤.高糖对体外培养的视网膜Müller细胞活性的影响[J].中华实验眼科杂志, 2012, 30(9) 791-794.DOI: 10.3760/cma.j.issn.2095-0160.2012.09.006.Guo J, Ke M, Wen XF.Effect of high glucose on cultured retinal Müller cell in vitro[J].Chin J Exp Ophthalmol, 2012, 30(9) 791-794.DOI: 10.3760/cma.j.issn.2095-0160.2012.09.006.
|
18. |
Xu Z, Wei Y, Gong J, et al. NRF2 plays a protective role in diabetic retinopathy in mice[J]. Diabetologia, 2014, 57(1): 204-213.DOI: 10.1007/s00125-013-3093-8.
|
19. |
Zhong Q, Mishra M, Kowluru RA.Transcription factor Nrf2-mediated antioxidant defense system in the development of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2013, 54(6): 3941-3948.DOI: 10.1167/iovs.13-11598.
|
20. |
Suzuki T, Yamamoto M. Molecular basis of the Keap1-Nrf2 system[J].Free Radic Biol Med, 2015, 88(Part B): 93-100. DOI: 10.1016/j.freeradbiomed.2015.06.006.
|
21. |
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging [J].Free Radic Biol Med, 2015, 88(Pt B): 314-336. DOI: 10.1016/j.freeradbiomed.2015.05.036.
|
22. |
Prasad KN. Simultaneous activation of Nrf2 and elevation of antioxidant compounds for reducing oxidative stress and chronic inflammation in human Alzheimer’s disease[J].Mech Ageing Dev, 2016, 153: 41-47.DOI: 10.1016/j.mad.2016.01.002.
|
23. |
Dreger H, Westphal K, Weller A, et al. Nrf2-depengdent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection[J].Caidiovasc Res, 2009, 83(2): 354-361.DOI: 10.1093/cvr/cvp107.
|
24. |
Shen G, Jeong WS, Hu R, et al. Regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways by chemopreventive agents[J]. Antioxid Redox Signal, 2005, 7(7): 1648-1663. DOI: 10.1089/ars.2005.7.1648.
|
25. |
Korsmeyer SJ, Shutter JR, Veis DJ, et al. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death[J]. Semin Cancer Biol, 1993, 4: 327-32.
|
26. |
Korsmeyer SJ. Bcl-2 gene family and the regulation of programmed cell death[J]. Cancer Res, 1999, 59(7 Suppl): S1693-1700.
|
27. |
Podestà F, Romeo G, Liu WH, et al. Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro[J]. Am J Pathol, 2000, 156(3): 1025-1032. DOI: 10.1016/S0002-9440(10)64970-X.
|
28. |
Shen J, Wu Y, Xu JY, et al. ERK-and Akt-dependent neuroprotection by erythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL, Bax and BAD[J]. Invest Ophthalmol Vis Sci, 2010, 51(1): 35-46. DOI: 10.1167/iovs.09-3544.
|
29. |
Oshitari T, Yamamoto S, Hata N, et al. Mitochondria-and caspase-dependent cell death pathway involved in neuronal degeneration in diabetic retinopathy[J]. Br J Ophthalmol, 2008, 92(4): 552-556.DOI: 10.1136/bjo.2007.132308.
|
30. |
Kusner LL, Sarthy VP, Mohr S. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase: a role in high glucose-induced apoptosis in retinal Müller cells[J]. Invest Ophthalmol Vis Sci, 2004, 45(5): 1553-1561.
|
31. |
Mohr S, Xi X, Tang J, et al. Caspase activation in retinas of diabetic and galactosemic mice and diabetic patient[J]. Diabetes, 2002, 51(4): 1172-1179.
|
32. |
Wang L, Chen Y, Sternberg P, et al. Essential roles of the PI3 kinase/Akt pathway in regulating Nrf2-dependent antioxidant functions in the RPE[J]. Invest Ophthalmol Vis Sci, 2008, 49: 1671-1678.
|
33. |
Papaiahgari S, Zhang Q, Kleeberger SR, et al. Hyperoxia stimulates an Nrf2-ARE transcriptional response via ROS-EGFR-PI3K-Akt/ERK MAP kinase signaling in pulmonary epithelial cells[J]. Antioxid Redox Signal, 2006, 8(1-2): 43-52. DOI: 10.1089/ars.2006.8.43.
|
34. |
Zhang H, Forman HJ. Acrolein induces heme oxygenase-1 through PKC-delta and PI3K in human bronchial epithelial cells[J]. Am J Respir Cell Mol Biol, 2008, 38(4): 483-490. DOI: 10.1165/rcmb.2007-0260OC.
|
35. |
Jiang T, Chang Q, Zhao Z, et al. Melatonin-mediated cytoprotection against hyperglycemic injury in Müller cells[J/OL]. PLoS One, 2012, 7(12): 50661[2012-12-04]. https://doi.org/10.1371/journal.pone.0050661.DOI:10.1371/journal.pone.0050661.
|
36. |
Niture SK, Jaiswal AK.Nrf2 protein up-regulates antiapoptotic protein bcl-2 and prevents cellular apoptosis[J]. J Biol Chem, 2012, 287(13): 9873-9886.DOI: 10.1074/jbc.M111.312694.
|
37. |
Li S, Li J, Shen C, et al. Tert-butylhydroquinone (tBHQ) protects hepatocytes against lipotoxicity via inducing autophagy independently of Nrf2 activation[J]. Biochim Biophys Acta, 2014, 1841(1): 22-33. DOI: 10.1016/j.bbalip.2013.09.004.
|
38. |
Zhang Y, Fang Liu F, Bi X, et al. The antioxidant compound tert-butylhydroquinone activates Akt in myocardium, suppresses apoptosis and ameliorates pressure overload-induced cardiac dysfunction[J/OL]. Sci Rep, 2015, 5: 13005[2015-08-11]. https://www.nature.com/articles/srep13005.DOI: 10.1038/srep13005.
|