1. |
Masland RH. The neuronal organization of the retina[J]. Neuron, 2012, 76(2): 266-280. DOI: 10.1016/j.neuron.2012.10.002.
|
2. |
Wassle H. Parallel processing in the mammalian retina[J]. Nat Rev Neurosci, 2004, 5(10): 747-757. DOI: 10.1038/nrn1497.
|
3. |
Haverkamp S, Grunert U, Wassle H. The synaptic architecture of AMPA receptors at the cone pedicle of the primate retina[J]. J Neurosci, 2001, 21(7): 2488-2500.
|
4. |
Haverkamp S, Grunert U, Wassle H. Localization of kainate receptors at the cone pedicles of the primate retina[J]. J Comp Neurol, 2001, 436(4): 471-486.
|
5. |
Vardi N, Duvoisin R, Wu G, et al. Localization of mGluR6 to dendrites of ON bipolar cells in primate retina[J]. J Comp Neurol, 2000, 423(3): 402-412.
|
6. |
Morgans CW, Zhang J, Jeffrey BG, et al. TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells[J]. Proc Natl Acad Sci USA, 2009, 106(45): 19174-19178. DOI: 10.1073/pnas.0908711106.
|
7. |
Shen Y, Heimel JA, Kamermans M, et al. A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells[J]. J Neurosci, 2009, 29(19): 6088-6093. DOI: 10.1523/jneurosci.0132-09.2009.
|
8. |
Berntson A, Taylor WR. Response characteristics and receptive field widths of on-bipolar cells in the mouse retina[J]. J Physiol, 2000, 524 Pt 3: 879-889.
|
9. |
Euler T, Masland RH. Light-evoked responses of bipolar cells in a mammalian retina[J]. J Neurophysiol, 2000, 83(4): 1817-1829.
|
10. |
Famiglietti EV Jr, Kolb H. A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina[J]. Brain Res, 1975, 84(2): 293-300.
|
11. |
Raviola E, Dacheux RF. Excitatory dyad synapse in rabbit retina[J]. Proc Natl Acad Sci USA, 1987, 84(20): 7324-7328.
|
12. |
Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa[J]. Lancet, 2006, 368(9549): 1795-1809. DOI: 10.1016/s0140-6736(06)69740-7.
|
13. |
O’Neal TB, Luther EE. Retinitis pigmentosa[M]. Treasure Island (FL): StatPearls Publishing LLC, 2018.
|
14. |
Le Meur G, Lebranchu P, Billaud F, et al. Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis[J]. Mol Ther, 2018, 26(1): 256-268. DOI: 10.1016/j.ymthe.2017.09.014.
|
15. |
Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa[J]. Clin Genet, 2013, 84(2): 132-141. DOI: 10.1111/cge.12203.
|
16. |
Simunovic MP, Shen W, Lin JY, et al. Optogenetic approaches to vision restoration[J]. Exp Eye Res, 2018, 178: 15-26. DOI: 10.1016/j.exer.2018.09.003.
|
17. |
Sakmar TP, Menon ST, Marin EP, et al. Rhodopsin: insights from recent structural studies[J]. Annu Rev Biophys Biomol Struct, 2002, 31: 443-484. DOI: 10.1146/annurev.biophys.31.082901.134348.
|
18. |
Hardie RC, Raghu P. Visual transduction in drosophila[J]. Nature, 2001, 413(6852): 186-193. DOI: 10.1038/35093002.
|
19. |
Nagel G, Ollig D, Fuhrmann M, et al. Channelrhodopsin-1: a light-gated proton channel in green algae[J]. Science, 2002, 296(5577): 2395-2398. DOI: 10.1126/science.1072068.
|
20. |
Sineshchekov OA, Jung KH, Spudich JL. Two rhodopsins mediate phototaxis to low- and high-intensity light in chlamydomonas reinhardtii[J]. Proc Natl Acad Sci USA, 2002, 99(13): 8689-8694. DOI: 10.1073/pnas.122243399.
|
21. |
Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proc Natl Acad Sci USA, 2003, 100(24): 13940-13945. DOI: 10.1073/pnas.1936192100.
|
22. |
Bamann C, Kirsch T, Nagel G, et al. Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function[J]. J Mol Biol, 2008, 375(3): 686-694. DOI: 10.1016/j.jmb.2007.10.072.
|
23. |
Nagel G, Brauner M, Liewald JF, et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses[J]. Curr Biol, 2005, 15(24): 2279-2284. DOI: 10.1016/j.cub.2005.11.032.
|
24. |
Ishizuka T, Kakuda M, Araki R, et al. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels[J]. Neurosci Res, 2006, 54(2): 85-94. DOI: 10.1016/j.neures.2005.10.009.
|
25. |
Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat Neurosci, 2005, 8(9): 1263-1268. DOI: 10.1038/nn1525.
|
26. |
Zhang F, Wang LP, Brauner M, et al. Multimodal fast optical interrogation of neural circuitry[J]. Nature, 2007, 446(7136): 633-639. DOI: 10.1038/nature05744.
|
27. |
Lee S, Chen L, Chen M, et al. An unconventional glutamatergic circuit in the retina formed by vGluT3 amacrine cells[J]. Neuron, 2014, 84(4): 708-715. DOI: 10.1016/j.neuron.2014.10.021.
|
28. |
Yizhar O, Fenno LE, Davidson TJ, et al. Optogenetics in neural systems[J]. Neuron, 2011, 71(1): 9-34. DOI: 10.1016/j.neuron.2011.06.004.
|
29. |
Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics[J]. Annu Rev Neurosci, 2011, 34: 389-412. DOI: 10.1146/annurev-neuro-061010-113817.
|
30. |
Bi A, Cui J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration[J]. Neuron, 2006, 50(1): 23-33. DOI: 10.1016/j.neuron.2006.02.026.
|
31. |
Flannery JG, Farber DB, Bird AC, et al. Degenerative changes in a retina affected with autosomal dominant retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 1989, 30(2): 191-211.
|
32. |
Lee S, Zhang Y, Chen M, et al. Segregated glycine-glutamate co-transmission from vGluT3 amacrine cells to contrast-suppressed and contrast-enhanced retinal circuits[J]. Neuron, 2016, 90(1): 27-34. DOI: 10.1016/j.neuron.2016.02.023.
|
33. |
Gollisch T, Meister M. Eye smarter than scientists believed: neural computations in circuits of the retina[J]. Neuron, 2010, 65(2): 150-164. DOI: 10.1016/j.neuron.2009.12.009.
|
34. |
Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration[J]. Nat Neurosci, 2008, 11(6): 667-675. DOI: 10.1038/nn.2117.
|
35. |
Doroudchi MM, Greenberg KP, Liu J, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness[J]. Mol Ther, 2011, 19(7): 1220-1229. DOI: 10.1038/mt.2011.69.
|
36. |
Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa[J]. Science, 2010, 329(5990): 413-417. DOI: 10.1126/science.1190897.
|
37. |
Zhang Y, Ivanova E, Bi A, et al. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration[J]. J Neurosci, 2009, 29(29): 9186-9196. DOI: 10.1523/jneurosci.0184-09.2009.
|
38. |
Stone JL, Barlow WE, Humayun MS, et al. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa[J]. Arch Ophthalmol, 1992, 110(11): 1634-1639.
|
39. |
Yue L, Weiland JD, Roska B, et al. Retinal stimulation strategies to restore vision: fundamentals and systems[J]. Prog Retin Eye Res, 2016, 53: 21-47. DOI: 10.1016/j.preteyeres.2016.05.002.
|
40. |
De Silva SR, Barnard AR. Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy[J]. Proc Natl Acad Sci USA, 2017, 114(42): 11211-11216. DOI: 10.1073/pnas.1701589114.
|
41. |
Liu MM, Dai JM, Liu WY, et al. Human melanopsin-AAV2/8 transfection to retina transiently restores visual function in rd1 mice[J]. Int J Ophthalmol, 2016, 9(5): 655-661. DOI: 10.18240/ijo.2016.05.03.
|
42. |
Greenberg KP, Pham A, Werblin FS. Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism[J]. Neuron, 2011, 69(4): 713-720. DOI: 10.1016/j.neuron.2011.01.024.
|
43. |
Beltran WA, Boye SL, Boye SE, et al. rAAV2/5 gene-targeting to rods: dose-dependent efficiency and complications associated with different promoters[J]. Gene Ther, 2010, 17(9): 1162-1174. DOI: 10.1038/gt.2010.56.
|
44. |
Boye SE, Boye SL, Lewin AS, et al. A comprehensive review of retinal gene therapy[J]. Mol Ther, 2013, 21(3): 509-519. DOI: 10.1038/mt.2012.280.
|
45. |
Ivanova E, Pan ZH. Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina[J]. Mol Vis, 2009, 15: 1680-1689.
|
46. |
Sugano E, Isago H, Wang Z, et al. Immune responses to adeno-associated virus type 2 encoding channelrhodopsin-2 in a genetically blind rat model for gene therapy[J]. Gene Ther, 2011, 18(3): 266-274. DOI: 10.1038/gt.2010.140.
|
47. |
Kleinlogel S, Feldbauer K, Dempski RE, et al. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh[J]. Nat Neurosci, 2011, 14(4): 513-518. DOI: 10.1038/nn.2776.
|
48. |
Kleinlogel S, Terpitz U, Legrum B, et al. A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins[J]. Nat Methods, 2011, 8(12): 1083-1088. DOI: 10.1038/nmeth.1766.
|
49. |
Fradot M, Busskamp V, Forster V, et al. Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes[J]. Hum Gene Ther, 2011, 22(5): 587-593. DOI: 10.1089/hum.2010.157.
|