1. |
Bu SC, Kuijer R, Li XR, et al. Idiopathic epiretinal membrane[J]. Retina, 2014, 34(12): 2317-2335. DOI: 10.1097/iae.0000000000000349.
|
2. |
Bringmann A, Wiedemann P. Involvement of Müller glial cells in epiretinal membrane formation[J]. Graefe’s Arch Clin Exp Ophthalmol, 2009, 247(7): 865-883. DOI: 10.1007/s00417-009-1082-x.
|
3. |
Di G, Weihong Y, Xiao Z, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography[J]. Graefe’s Arch Clin Exp Ophthalmol, 2015, 254(5): 873-879. DOI: 10.1007/s00417-015-3143-7.
|
4. |
Lee SM, Pak KY, Kwon HJ, et al. Association between tangential contraction and early vision loss in idiopathic epiretinal membrane[J]. Retina, 2018, 38(3): 541-549. DOI: 10.1097/iae.0000000000001559.
|
5. |
Schwartz DM, Fingler J, Kim DY, et al. Phase-variance optical coherence tomography: a technique for noninvasive angiography[J]. Ophthalmology, 2014, 121(1): 180-187. DOI: 10.1016/j.ophtha.2013.09.002.
|
6. |
Sigler EJ, Randolph JC, Charles S. Delayed onset inner nuclear layer cystic changes following internal limiting membrane removal for epimacular membrane[J]. Graefe’s Arch Clin Exp Ophthalmol, 2013, 251(7): 1679-1685. DOI: 10.1007/s00417-012-2253-8.
|
7. |
Romano MR, Cennamo G, Schiemer S, et al. Deep and superficial OCT angiography changes after macular peeling: idiopathic vs diabetic epiretinal membranes[J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 255(4): 681-689. DOI: 10.1007/s00417-016-3534-4.
|
8. |
Spina CL, Carnevali A, Marchese A, et al. Reproducibility and reliability of optical coherence tomography angiography for foveal avascular zone evaluation and measurement in different settings[J]. Retina, 2017, 37(9): 1636-1641. DOI: 10.1097/IAE.0000000000001426.
|
9. |
Springer AD, Hendrickson AE. Development of the primate area of high acuity, 3: temporal relationships between pit formation, retinal elongation and cone packing[J]. Vis Neurosci, 2005, 22(2): 171-185. DOI: 10.1017/s095252380522206x.
|
10. |
Romano MR, Cennamo G, Amoroso F, et al. Intraretinal changes in the presence of epiretinal traction[J]. Graefe’s Arch Clin Exp Ophthalmol, 2016, 255(1): 31-38. DOI: 10.1007/s00417-016-3413-z.
|
11. |
Okamoto F, Sugiura Y, Okamoto Y, et al. Associations between metamorphopsia and foveal microstructure in patients with epiretinal membrane[J]. Invest Ophthalmol Vis Sci, 2012, 53(11): 6770-6775. DOI: 10.1167/iovs.12-9683.
|
12. |
Arichika S, Hangai M, Yoshimura N. Correlation between thickening of the inner and outer retina and visual acuity in patients with epiretinal membrane[J]. Retina, 2010, 30(3): 503-508. DOI: 10.1097/iae.0b013e3181bd2d65.
|
13. |
Mitamura Y, Hirano K, Baba T, et al. Correlation of visual recovery to presence of photoreceptor inner/outer segment junction in optical coherence images after epiretinal membrane surgery[J]. Br J Ophthalmol, 2009, 93(2): 171-175. DOI: 10.1136/bjo.2008.146381.
|
14. |
Casini G, Loiudice P, Lazzeri S, et al. Analysis of choroidal thickness change after 25-gauge vitrectomy for idiopathic epiretinal membrane with or without phacoemulsification and intraocular lens implantation[J]. Ophthalmologica, 2017, 237(2): 78-84. DOI: 10.1159/000452769.
|
15. |
Samara WA, Say ET, Khoo CL, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2188-2195. DOI: 10.1097/iae.0000000000000847.
|
16. |
Govetto A, Lalane RA, Sarraf D, et al. Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme[J]. Am J Ophthalmol, 2017, 175(3): 99-113. DOI: 10.1016/j.ajo.2016.12.006.
|