1. |
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1-29. DOI: 10.1016/j.preteyeres.2018.07.004.
|
2. |
enkatesan R, Chandakkar P, Li B, et al. Classification of diabetic retinopathy images using multi-class multiple-instance learning based on color correlogram features[C]. International Conference of the IEEE Engineering in Medicine & Biology Society: IEEE, 2012.
|
3. |
Abràmoff MD, Lou Y, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5200-5206. DOI: 10.1167/iovs.16-19964.
|
4. |
Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology, 2017, 124(7): 962-969. DOI: 10.1016/j.ophtha.2017.02.008.
|
5. |
Li Z, Keel S, Liu C, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs[J/OL]. Diabetes Care, 2018, 2018: 1[2018-12-01]. https://www.x-mol.com/paper/837329. DOI: 10.2337/dc18-0147.
|
6. |
van der HAA, Abramoff MD, Verbraak F, et al. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System[J]. Acta Ophthalmol, 2018, 96(1): 63-68. DOI: 10.1111/aos.13613.
|
7. |
Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2017, 135(11): 1170-1176. DOI: 10.1001/jamaophthalmol.2017.3782.
|
8. |
Velezmontoya R, Oliver SCN, Olson JL, et al. Current knowledge and trends in age-related macular degeneration: genetics, epidemiology, and prevention[J]. Retina, 2014, 34(3): 423-441. DOI: 10.1097/IAE.0000000000000036.
|
9. |
ElTanboly A, Ismail M, Shalaby A, et al. A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images[J]. Med Phys, 2017, 44(3): 914-923. DOI: 10.1002/mp.12071.
|
10. |
Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning[J]. Graefe’s Arch Clin Exp Ophthalmol, 2018, 256(2): 259-265. DOI: 10.1007/s00417-017-3850-3.
|
11. |
Samina K, Usman AM, Taimur H, et al. Fully automated robust system to detect retinal edema, central serous chorioretinopathy, and age related macular degeneration from optical coherence tomography images[J/OL]. Biomed Res Int, 2017, 2017: 7148245[2017-03-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382397/. DOI: 10.1155/2017/7148245.
|
12. |
Sivaswamy J, Krishnadas SR, Chakravarty A, et al. A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis[DB]. JSM Biomed Imaging Data, 2015, 2(1): 1004.
|
13. |
Hiroki M, Tabuchi H, Nakakura S, et al. Deep-learning classifier with an ultra-wide-field scanning laser ophthalmoscope detects glaucoma visual field severity[J]. J Glaucoma, 2018, 27(7): 1.
|
14. |
Varadarajan AV, Ryan P, Katy B, et al. Deep learning for predicting refractive error from retinal fundus images[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 2861-2868. DOI: 10.1167/iovs.18-23887.
|
15. |
Xiao S, Bucher F, Wu Y, et al. Fully automated, deep learning segmentation of oxygen-induced retinopathy images[J/OL]. Jci Insight, 2017, 2(24): 97585[2017-12-21]. https://www.ncbi.nlm.nih.gov/pmc/?term=10.1172%2Fjci.insight.97585. DOI: 10.1172/jci.insight.97585.
|
16. |
Ohsugi H, Tabuchi H, Enno H, et al. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment[J/OL]. Sci Rep, 2017, 7: 9425[2017-08-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573327/. DOI: 10.1038/s41598-017-09891-x.
|
17. |
Damato B, Eleuteri A, Fisher AC, et al. Artificial neural networks estimating survival probability after treatment of choroidal melanoma[J]. Ophthalmology, 2008, 115(9): 1598-1607. DOI: 10.1016/j.ophtha.2008.01.032.
|
18. |
Poplin R, Varadarajan AV, Blumer K, et al. Predicting cardiovascular risk factors from retinal fundus photographs using deep learning[J/OL]. 2017, 2017: 09843[2017-08-21]. https://arxiv.org/abs/1708.09843. DOI: 10.1038/s41551-018-0195-0.
|
19. |
O’Bryhim BE, Apte RS, Kung N, et al. Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings[J]. JAMA ophthalmol, 2018, 136(11): 1242-1248. DOI: 10.1001/jamaophthalmol.2018.3556.
|
20. |
Prentasic P, Loncaric S, Vatavuk Z, et al. Diabetic retinopathy image database(DRiDB): a new database for diabetic retinopathy screening programs research[C]. International Symposium on Image & Signal Processing & Analysis, 2014.
|