1. |
WOLFF J. Das Gesetz der Transformation der Knochen[M]. Berlin:Hirschwald, 1892.
|
2. |
FROST H M. A determinant of bone architecture.The minimum effective strain[J]. Clin Orthop Relat Res, 1983, 175:286-292.
|
3. |
RUBIN C T, LANYON L E. Regulation of bone mass by mechanical strain magnitude[J]. Calcif Tissue Int, 1985, 37(4):411-417.
|
4. |
BATRA N N, LI Y J, YELLOWLEY C E, et al. Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells[J]. J Biomech, 2005, 38(9):1909-1917.
|
5. |
RUBIN C T, MCLEOD K J. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain[J]. Clin Orthop Relat Res, 1994, 298:165-174.
|
6. |
ROBLING A G, HINANT F M, BURR D B, et al. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts[J]. J Bone Miner Res, 2002, 17(8):1545-1554.
|
7. |
TURNER C H. Three rules for bone adaptation to mechanical stimuli[J]. Bone, 1998, 23(5):399-407.
|
8. |
UMEMURA Y, ISHIKO T, YAMAUCHI T, et al. Five jumps per day increase bone mass and breaking force in rats[J]. J Bone Miner Res, 1997, 12(9):1480-1485.
|
9. |
ROBLING A G, BURR D B, TURNER C H. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading[J]. J Bone Miner Res, 2000, 15(8):1596-1602.
|
10. |
ROBLING A G, BURR D B, TURNER C H. Recovery periods restore mechanosensitivity to dynamically loaded bone[J]. J Exp Biol, 2001, 204(Pt 19):3389-3399.
|
11. |
PARFITT A M. The cellular basis of bone turnover and bone loss:a rebuttal of the osteocytic resorption--bone flow theory[J]. Clin Orthop Relat Res, 1977, 127:236-247.
|
12. |
CHEN J H, LIU C, YOU L, et al. Boning up on Wolff's law:mechanical regulation of the cells that make and maintain bone[J]. J Biomech, 2010, 43(1):108-118.
|
13. |
BONEWALD L F. Mechanosensation and transduction in osteocytes[J]. Bonekey Osteovision, 2006, 3(10):7-15.
|
14. |
KLEIN-NULEND J, VAN DER PLAS A, SEMEINS C M, et al. Sensitivity of osteocytes to biomechanical stress in vitro[J]. FASEB J, 1995, 9(5):441-445.
|
15. |
BONEWALD L F. The amazing osteocyte[J]. J Bone Miner Res, 2011, 26(2):229-238.
|
16. |
JACOBS C R, TEMIYASATHIT S, CASTILLO A B. Osteocyte mechanobiology and pericellular mechanics[J]. Annu Rev Biomed Eng, 2010, 12:369-400.
|
17. |
YOUNG W C, BUDYNAS B. Formulas for stress and strain[M]. New York:Mc Graw Hill, 1954.
|
18. |
RUBIN C T, LANYON L E. Dynamic strain similarity in vertebrates:an alternative to allometric limb bone scaling[J]. J Theor Biol, 1984, 107(2):321-327.
|
19. |
FRITTON S P, MCLEOD K J, RUBIN C T. Quantifying the strain history of bone:spatial uniformity and self-similarity of low-magnitude strains[J]. J Biomech, 2000, 33(3):317-325.
|
20. |
SRINIVASAN S, WEIMER D A, AGANS S C, et al. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle[J]. J Bone Miner Res, 2002, 17(9):1613-1620.
|
21. |
SRINIVASAN S, AUSK B J, POLIACHIK S L, et al. Rest-inserted loading rapidly amplifies the response of bone to small increases in strain and load cycles[J]. J Appl Physiol, 2007, 102(5):1945-1952.
|
22. |
PLUNKETT N A, PARTAP S, O'BRIEN F J. Osteoblast response to rest periods during bioreactor culture of collagen-glycosaminoglycan scaffolds[J]. Tissue Eng Part A, 2010, 16(3):943-951.
|
23. |
KLEIN-NULEND J, VELDHUIJZEN J P, DE JONG M, et al. Increased bone formation and decreased bone resorption in fetal mouse calvaria as a result of intermittent compressive force in vitro[J]. Bone Miner, 1987, 2(6):441-448.
|
24. |
HUISKES R, RUIMERMAN R, VAN LENTHE G H, et al. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone[J]. Nature, 2000, 405(6787):704-706.
|
25. |
BANG J K, HWANG S J, KO C Y, et al. Heat treatment and rest-inserted exercise enhances EMG activity of the lower limb[J].International Science Index, 2007, 1(11):902-905.
|
26. |
KLEIN-NULEND J, BAKKER A D, BACABAC R G, et al. Mechanosensation and transduction in osteocytes[J]. Bone, 2013, 54(2):182-190.
|
27. |
KLEIN-NULEND J, SEMEINS C M, AJUBI N E, et al. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts--correlation with prostaglandin upregulation[J]. Biochem Biophys Res Commun, 1995, 217(2):640-648.
|
28. |
XIONG J, ONAL M, JILKA R L, et al. Matrix-embedded cells control osteoclast formation[J]. Nat Med, 2011, 17(10):1235-1241.
|
29. |
TURNER C H, TAKANO Y, OWAN I, et al. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats[J]. Am J Physiol, 1996, 270(4 Pt 1):E634-E639.
|
30. |
NAKASHIMA T, HAYASHI M, FUKUNAGA T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression[J]. Nat Med, 2011, 17(10):1231-1234.
|
31. |
SAMY A S, IGWE O J. Regulation of IL-1β-induced cyclooxygenase-2 expression by interactions of Aβ peptide, apolipoprotein E and nitric oxide in human neuroglioma[J]. J Mol Neurosci, 2012, 47(3):533-545.
|
32. |
BANSAL K, NARAYANA Y, PATIL S A, et al. M. bovis BCG induced expression of COX-2 involves nitric oxide-dependent and-independent signaling pathways[J]. J Leukoc Biol, 2009, 85(5):804-816.
|
33. |
SALVEMINI D, MISKO T P, MASFERRER J L, et al. Nitric oxide activates cyclooxygenase enzymes[J]. Proc Natl Acad Sci U S A, 1993, 90(15):7240-7244.
|
34. |
TUNÇTAN B, ALTUG S, ULUDAG O, et al. Effects of cyclooxygenase inhibitors on nitric oxide production and survival in a mice model of sepsis[J]. Pharmacol Res, 2003, 48(1):37-48.
|
35. |
COOK S, VOLLENWEIDER P, MÉNARD B, et al. Increased eNO and pulmonary iNOS expression in eNOS null mice[J]. Eur Respir J, 2003, 21(5):770-773.
|
36. |
ZHU Y, ZHU M, LANCE P. iNOS signaling interacts with COX-2 pathway in colonic fibroblasts[J]. Exp Cell Res, 2012, 318(16):2116-2127.
|
37. |
SMITH W L, GARAVITO R M, DEWITT D L. Prostaglandin endoperoxide H synthases(cyclooxygenases)-1 and-2[J]. J Biol Chem, 1996, 271(52):33157-33160.
|
38. |
AJUBI N E, KLEIN-NULEND J, NIJWEIDE P J, et al. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes--a cytoskeleton-dependent process[J]. Biochem Biophys Res Commun, 1996, 225(1):62-68.
|
39. |
李晓东,黄跃生.机械信号的细胞感受与转导[J].中国病理生理杂志,2004(3):186-190.
|
40. |
MCGARRY J G, KLEIN-NULEND J, PRENDERGAST P J. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts[J]. Biochem Biophys Res Commun, 2005, 330(1):341-348.
|
41. |
ALLEN F D, HUNG C T, POLLACK S R, et al. Serum modulates the intracellular Calcium response of primary cultured bone cells to shear flow[J]. J Biomech, 2000, 33(12):1585-1591.
|