1. |
陈咏竹, 邱峰, 赵晓军.自组装短肽系统及其材料学应用[J].材料科学与工程学报, 2009, 27(2):292-296.
|
2. |
DE LA RICA R, MATSUI H. Applications of peptide and protein-based materials in bionanotechnology[J]. Chem Soc Rev, 2010, 39(9):3499-3509.
|
3. |
KOUTSOPOULOS S, UNSWORTH L D, NAGAI Y, et al. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold[J]. Proc Natl Acad Sci U S A, 2009, 106(12):4623-4628.
|
4. |
BRANCO M C, POCHAN D J, WAGNER N J, et al. The effect of protein structure on their controlled release from an injectable peptide hydrogel[J]. Biomaterials, 2010, 31(36):9527-9534.
|
5. |
刘燕飞, 吴敏, 刘博, 等.自组装短肽水凝胶对功能性蛋白质IGF-1、aFGF以及VEGF的缓释[J].生物医学工程学杂志, 2011, 28(2):310-313.
|
6. |
WALLACE D G, ROSENBLATT J. Collagen gel systems for sustained delivery and tissue engineering[J]. Adv Drug Deliv Rev, 2003, 55(12):1631-1649.
|
7. |
ZISCH A H, SCHENK U, SCHENSE J C, et al. Covalently conjugated VEGF--fibrin matrices for endothelialization[J]. J Control Release, 2001, 72(1):101-113.
|
8. |
VERHEYEN E, DELAIN-BIOTON L, DER WAL S V, et al. Protein macromonomers for covalent immobilization and subsequent triggered release from hydrogels[J]. J Control Release, 2010, 148(1):e18-e19.
|
9. |
CENSI R, DI MARTINO P, VERMONDEN T, et al. Hydrogels for protein delivery in tissue engineering[J]. Journal of Controlled Release, 2012, 161(2):680-692.
|
10. |
SAKIYAMA-ELBERT S E, HUBBELL J A. Development of fibrin derivatives for controlled release of heparin-binding growth factors[J]. J Control Release, 2000, 65(3):389-402.
|
11. |
SCHILLEMANS J P, HENNINK W E, VAN NOSTRUM C F. Charged dextran hydrogels for post-loading and release of proteins[J]. J Control Release, 2010, 148(1):e82-e83.
|
12. |
DE WOLF F A, BRETT G M. Ligand-binding proteins:their potential for application in systems for controlled delivery and uptake of ligands[J]. Pharmacol Rev, 2000, 52(2):207-236.
|
13. |
SARGEANT T D, GULER M O, OPPENHEIMER S M, et al. Hybrid bone implants:self-assembly of peptide amphiphile nanofibers within porous Titanium[J]. Biomaterials, 2008, 29(2):161-171.
|
14. |
MILLER R E, KOPESKY P W, GRODZINSKY A J. Growth factor delivery through self-assembling peptide scaffolds[J]. Clin Orthop Relat Res, 2011, 469(10):2716-2724.
|
15. |
DAVIS M E, HSIEH P C, TAKAHASHI T, et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction[J]. Proc Natl Acad Sci U S A, 2006, 103(21):8155-8160.
|
16. |
PADIN-IRUEGAS M E, MISAO Y, DAVIS M E, et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction[J]. Circulation, 2009, 120(10):876-887.
|
17. |
LIU Y F, ZHAO X J. PRESENTATION OF BIOACTIVE EPITOPES WITH FREE N-TERMINI ON SELF-ASSEMBLING PEPTIDE NANOFIBERS[J]. Nano, 2011, 6(1):47-57.
|
18. |
焦利敏, 廖学品, 石碧.紫外分光光度法下直接测定蛋白质溶液的浓度[J].化学研究与应用, 2007, 19(5):562-566.
|
19. |
LAVIK E, LANGER R. Tissue engineering:current state and perspectives[J]. Appl Microbiol Biotechnol, 2004, 65(1):1-8.
|
20. |
HOFFMAN A S. Hydrogels for biomedical applications[J]. Adv Drug Deliv Rev, 2002, 54(1):3-12.
|
21. |
PEPPAS N A, HILT J Z, KHADEMHOSSEINI A, et al. Hydrogels in biology and medicine:From molecular principles to bionanotechnology[J]. Adv Mater, 2006, 18(11):1345-1360.
|