1. |
CAMERON A R, FRITH J E, GOMEZ G A, et al. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells[J]. Biomaterials, 2014, 35(6):1857-1868.
|
2. |
方易冰, 廖斌.心肌组织工程支架材料研究进展[J].中国修复重建外科杂志, 2011, 25(3):361-364.
|
3. |
LAU T T, WANG D A. Bioresponsive hydrogel scaffolding systems for 3D constructions in tissue engineering and regenerative medicine[J]. Nanomedicine, 2013, 8(4):655-668.
|
4. |
GUO H D, WANG H J, TAN Y Z, et al. Transplantation of Marrow-Derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction[J]. Tissue Eng Part A, 2011, 17(1/2):45-58.
|
5. |
DULING R R, DUPAIX R B, KATSUBE N, et al. Mechanical characterization of electrospun polycaprolactone(PCL):a potential scaffold for tissue engineering[J]. J Biomech Eng, 2008, 130(1):011006.
|
6. |
POK S, MYERS J D, MADIHALLY S V, et al. A multi-layered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering[J]. Acta Biomater, 2013, 9(3):5630-5642.
|
7. |
SHAH R, READY D, KNOWLES J C, et al. Sequential identification of a degradable phosphate glass scaffold for skeletal muscle regeneration[J]. J Tissue Eng Regen Med, 2012.
|
8. |
ALEKSEEVA T, ABOU NEEL E A, KNOWLES J C. Development of conical soluble phosphate glass fibers for directional tissue growth[J]. J Biomater Appl, 2012, 26(6):733-744.
|
9. |
董教明, 莫秀梅, 李雨, 等.天然组织去细胞技术的研究进展[J].生物医学工程学杂志, 2012, 29(5):1007-1013.
|
10. |
吕晶同, 项舟.肌腱组织工程生物衍生支架材料[J].生物医学工程学杂志, 2013, 30(2):451-454.
|
11. |
LIU J, XU H H, ZHOU H Z, et al. Human umbilical cord stem cell encapsulation in novel macroporous and injectable fibrin for muscle tissue engineering[J]. Acta Biomater, 2013, 9(1):4688-4697.
|
12. |
罗会涛, 赵婧, 范兴平, 等.不同类型多孔结构生物材料支架制备及其性能优化[J].中国材料进展, 2012, 31(5):30-39.
|
13. |
GONG X, TANG C Y, ZHANG Y, et al. Fabrication of graded macroporous poly(lactic acid)scaffold by a progressive solvent casting/porogen leaching approach[J]. J Appl Polym Sci, 2012, 125(1):571-577.
|
14. |
LEE M, WU B M, DUNN J C. Effect of scaffold architecture and pore size on smooth muscle cell growth[J]. J Biomed Mater Res A, 2008, 87A(4):1010-1016.
|
15. |
KROEHNE V, HESCHEL I, SCHUEGNER F, et al. Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts[J]. J Cell Mol Med, 2008, 12(5A):1640-1648.
|
16. |
QIAN L, ZHANG H F. Controlled freezing and freeze drying:a versatile route for porous and micro-/nano-structured materials[J]. J Chem Tech Biotech, 2011, 86(2):172-184.
|
17. |
AVISS K J, GOUGH J E, DOWNES S. aligned electrospun polymer fibres for skeletal muscle regeneration[J]. Eur Cell Mater, 2010, 19:193-204.
|
18. |
BLAKENEY B A, TAMBRALLI A, ANDERSON J M, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold[J]. Biomaterials, 2011, 32(6):1583-1590.
|
19. |
HWANG C M, SANT S, MASAELI M, et al. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering[J]. Biofabrication, 2010, 2(3):035003.
|
20. |
DERBY B. Printing and prototyping of tissues and scaffolds[J]. Science, 2012, 338(619):921-926.
|
21. |
LEE J Y, CHOI B, WU B, et al. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering[J]. Biofabrication, 2013, 5(4):045003.
|
22. |
JI C, KHADEMHOSSEINI A, DEHGHANI F. Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications[J]. Biomaterials, 2011, 32(36):9719-9729.
|
23. |
NG S S, SU K, LI C, et al. Biomechanical study of the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the surface layer of hydrogel scaffolds for cartilage tissue engineering[J]. Acta Biomater, 2012, 8(1):244-252.
|
24. |
LIU J, ZHOU H Z, WEIR M D, et al. Fast-Degradable microbeads encapsulating human umbilical cord stem cells in alginate for muscle tissue engineering[J]. Tissue Eng Part A, 2012, 18(21/22):2303-2314.
|
25. |
LEE J, ABDEEN A A, HUANG T H, et al. Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells[J]. J Mech Behav Biomed Mater, 2014, 38:209-218.
|
26. |
KU S H, LEE S H, PARK C B. Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation[J]. Biomaterials, 2012, 33(26):6098-6104.
|
27. |
RICOTTI L, POLINI A, GENCHI G G, et al. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds[J]. Biomed Mater, 2012, 7(3):035010.
|
28. |
JANA S, COOPER A, ZHANG M Q. Chitosan scaffolds with unidirectional microtubular pores for large skeletal myotube Generation[J]. Adv Healthc Mater, 2013, 2(4):557-561.
|
29. |
NGUYEN L H, ANNABI N, NIKKHAH M, et al. Vascularized bone tissue engineering:approaches for potential improvement[J]. Tissue Eng Part B Rev, 2012, 18(5):363-382.
|
30. |
ARTEL A, MEHDIZADEH H, CHIU Y C, et al. An agent-based model for the investigation of neovascularization within porous scaffolds[J]. Tissue Eng Part A, 2011, 17(17-18):2133-2141.
|
31. |
CHIU Y C, CHENG M H, ENGEL H, et al. The role of pore size on vascularization and tissue remodeling in PEG hydrogels[J]. Biomaterials, 2011, 32(26):6045-6051.
|
32. |
THOMSON K S, KORTE F S, GIACHELLI C M, et al. Prevascularized microtemplated fibrin scaffolds for cardiac tissue engineering applications[J]. Tissue Eng Part A, 2013, 19(7-8):967-977.
|
33. |
BORSELLI C, CEZAR C A, SHVARTSMAN D A, et al. The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration[J]. Biomaterials, 2011, 32(34):8905-8914.
|