1. |
HA Minju, KIM V N. Regulation of microRNA biogenesis[J]. Nat Rev Mol Cell Biol, 2014, 15(8):509-524.
|
2. |
WANG Jing, ZHANG Yifan, ZHANG Ning, et al. An updated review of mechanotransduction in skin disorders:transcriptional regulators, ion channels, and microRNAs[J]. Cell Mol Life Sci, 2015, 72(11):2091-2106.
|
3. |
ZUO Bin, ZHU Junfeng, LI Jiao, et al. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2[J]. J Bone Miner Res, 2015, 30(2):330-345.
|
4. |
SON D J, KUMAR S, TAKABE W, et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis[J]. Atherosclerosis, 2013, 4(2):3000.
|
5. |
MOHAMED J S, LOPEZ M A, BORIEK A M. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β[J]. J Biol Chem, 2010, 285(38):29336-29347.
|
6. |
KUSUMBE A P, RAMASAMY S K, ADAMS R H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014, 507(7492):323-328.
|
7. |
CARRIERO A, ZIMMERMANN E A, PALUSZNY A, et al. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone[J]. J Bone Miner Res, 2014, 29(6):1392-1401.
|
8. |
CRANE J L, CAO Xu. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling[J]. J Clin Invest, 2014, 124(2):466-472.
|
9. |
KOMORI T. The functions of Runx family transcription factors and Cbfb in skeletal development[J]. Oral Science International, 2015, 12(1):1-4.
|
10. |
AZAGARSAMY M A, ANSETH K S. Light wavelengths to regulate the release of multiple growth factors[J]. Society For Biomaterials, 2014.
|
11. |
COLLER H A. The runt-related transcription factor 1 in prostate cancer-associated fibroblasts[J]. Proc Natl Acad Sci U S A, 2014, 111(46):16238-16239.
|
12. |
REN Xiaoyan, BISCHOFF D, WEISGERBER D W, et al. Osteogenesis on nanoparticulate mineralized collagen scaffolds via autogenous activation of the canonical BMP receptor signaling pathway[J]. Biomaterials, 2015, 50:107-114.
|
13. |
MAI Zhihui, PENG Zhuli, ZHANG Jinglan, et al. miRNA expression profile during fluid shear stress-induced osteogenic differentiation in MC3T3-E1 cells[J]. Chin Med J (Engl), 2013, 126(8):1544-1550.
|
14. |
NAGEL A K, BALL L E. O-GlcNAc modification of the runt-related transcription factor 2(Runx2) links osteogenesis and nutrient metabolism in bone marrow mesenchymal stem cells[J]. Mol Cell Proteomics, 2014, 13(12):3381-3395.
|
15. |
BUDI E H, XU Jian, DERYNCK R. Regulation of TGF-β receptors[J]. Methods Mol Biol, 2016, 1344:1-33.
|
16. |
OLSEN O E, WADER K F, HELLA H, et al. Activin a inhibits BMP-signaling by binding ACVR2A and ACVR2B[J]. Cell Commun Signal, 2015, 13:27.
|
17. |
WEI Fulan, LIU Dongxu, FENG Cheng, et al. microRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells[J]. Stem Cells Dev, 2015, 24(3):312-319.
|
18. |
FAN Wendong, FANG Rong, WU Xiaoyuan, et al. Shear-sensitive microRNA-34a modulates flow-dependent regulation of endothelial inflammation[J]. J Cell Sci, 2015, 128(1):70-80.
|
19. |
HERBERT K J, COOK A L, SNOW E T. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes[J]. Toxicol Appl Pharmacol, 2014, 277(3):288-297.
|
20. |
XIE Hong, LEE L, CARAMUTA S, et al. MicroRNA expression patterns related to merkel cell polyomavirus infection in human merkel cell carcinoma[J]. J Invest Dermatol, 2014, 134(2):507-517.
|
21. |
LEFORT K, BROOKS Y, OSTANO P, et al. A miR-34a-SIRT6 axis in the squamous cell differentiation network[J]. EMBO J, 2013, 32(16):2248-2263.
|
22. |
KUMAR S, KIM C W, SIMMONS R D, et al. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis:mechanosensitive athero-miRs[J]. Arterioscler Thromb Vasc Biol, 2014, 34(10):2206-2216.
|
23. |
WEBER M, BAKER M B, MOORE J P, et al. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity[J]. Biochem Biophys Res Commun, 2010, 393(4):643-648.
|
24. |
HUANG Ying, LI Jun. MicroRNA208 family in cardiovascular diseases:therapeutic implication and potential biomarker[J]. J Physiol Biochem, 2015, 71(3):479-486.
|
25. |
WANG Baowei, WU G J, CHENG Wenpin, et al. Mechanical stretch via transforming growth factor-β1 activates microRNA-208a to regulate hypertrophy in cultured rat cardiac myocytes[J]. J Formos Med Assoc, 2013, 112(10):635-643.
|
26. |
SONG Dongwoo, RYU J Y, KIM J O, et al. The miR-19a/b family positively regulates cardiomyocyte hypertrophy by targeting atrogin-1 and MuRF-1[J]. Biochem J, 2014, 457(1):151-162.
|
27. |
程远, 赵建军.破血化瘀、填精补髓法对实验性脑出血大鼠血肿周围脑组织GSK-3β信号通路的作用研究[J].医学信息,2015,28(14):18-18.
|
28. |
SUN X, MAPES B, WANG T, et al. Characterization of Cyclic-Stretch induced Dna demethylation in nampt/pbef promoter in the human lung endothelium[J]. Am J Respir Crit Care Med, 2014, 189:A3097.
|
29. |
ADYSHEV D M, ELANGOVAN V R, MOLDOBAEVA N, et al. Mechanical stress induces pre-B-cell colony-enhancing factor/NAMPT expression via epigenetic regulation by miR-374a and miR-568 in human lung endothelium[J]. Am J Respir Cell Mol Biol, 2014, 50(2):409-418.
|