1. |
陈万青, 郑荣寿, 张思维, 等.2003~2007年中国癌症发病分析[J].中国肿瘤, 2012, 21(3):161-170.
|
2. |
VERMA S, TURKBEY B, MURADYAN N, et al. Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management[J]. AJR Am J Roentgenol, 2012, 198(6):1277-1288.
|
3. |
PADHANI A R. Dynamic contrast-enhanced MRI in clinical oncology:Current status and future directions[J]. J Magn Reson Imaging, 2002, 16(4):407-422.
|
4. |
CUENOD C A, BALVAY D. Perfusion and vascular permeability:basic concepts and measurement in DCE-CT and DCE-MRI[J]. Diagn Interv Imaging, 2013, 94(12):1187-1204.
|
5. |
LANG N, SU M Y, YU H J, et al. Differentiation of myeloma and metastatic cancer in the spine using dynamic contrast-enhanced MRI[J]. Magn Reson Imaging, 2013, 31(8):1285-1291.
|
6. |
HUANG B, WONG C S, WHITCHER B, et al. Dynamic contrast-enhanced magnetic resonance imaging for characterising nasopharyngeal carcinoma:comparison of semiquantitative and quantitative parameters and correlation with tumour stage[J]. Eur Radiol, 2013, 23(6):1495-1502.
|
7. |
王伟胜, 骆嘉伟, 林红利.医学图像计算机辅助诊断数据平台研究[J].中国生物医学工程学报, 2013, 32(1):105-108.
|
8. |
VAN GINNEKEN B, SCHAEFER-PROKOP C M, PROKOP M. Computer-aided diagnosis:how to move from the laboratory to the clinic[J]. Radiology, 2011, 261(3):719-732.
|
9. |
GINNEKEN B V. CORNELIA M SCHAEFER-PROKOP, MATHIAS PROKOP.computer-aided diagnosis:how to move from the laboratory to the clinic[J]. Radiology, 2011, 261:719-732.
|
10. |
BALVAY D, KACHENOURA N, ESPINOZA S A, et al. Signal-to-noise ratio improvement in dynamic contrast-enhanced CT and MR imaging with automated principal component analysis filtering[J]. Radiology, 2011, 258(2):435-445.
|
11. |
AKBARI H, MACYSZYN L, DA X, et al. Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity[J]. Radiology, 2014, 273(2):502-510.
|
12. |
CHIUSANO G, STAGLIANO A, BASSO C. Unsupervised tissue segmentation from dynamic contrast-enhanced magnetic resonance imaging[J]. Artif Intell Med, 2014, 61(1):53-61.
|
13. |
HAQ N F, KOZLOWSKI P, JONES E C, et al. A data-driven approach to prostate cancer detection from dynamic contrast enhanced MRI[J]. Comput Med Imaging Graph, 2015, 41(SI):37-45.
|
14. |
GUBERN-MÉRIDA A, MARTI R, MELENDEZ J, et al. Automated localization of breast cancer in DCE-MRI[J]. Med Image Anal, 2015, 20(1):265-274.
|
15. |
LEVMAN J E, WARNER E, CAUSER P, et al. A vector machine formulation with application to the computer-Aided diagnosis of breast Cancer from DCE-MRI screening examinations[J]. J Digit Imaging, 2014, 27(1):145-151.
|
16. |
MILENKOVIC J, HERTL K, KOSIR A, et al. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions[J]. Artif Intell Med, 2013, 58(2):101-114.
|
17. |
GLASS J O, REDDICK W E. Hybrid artificial neural network segmentation and classification of dynamic contrast-enhanced MR imaging (DEMRI) of osteosarcoma[J]. Magn Reson Imaging, 1998, 16(9):1075-1083.
|
18. |
PANG Y, LI L, HU W, et al. Computerized segmentation and characterization of breast lesions in dynamic contrast-enhanced MR images using fuzzy c-means clustering and snake algorithm[J]. Comput Math Methods Med, 2012, 2012:634907.
|
19. |
HOSSAM ABD EL MUNIM, ALY A FARAG, MOHAMEDABO EL-GHAR, et al. A new shape-based segmentation approach for the DCE-MRI kidney images[C]//IEEE International Symposium on Signal Processing and Information Technology. Giza:2007:1186-1191.
|
20. |
ASHRAF A B, GAVENONIS S C, DAYE D, et al. A multichannel Markov random field framework for tumor segmentation with an application to classification of gene expression-based breast cancer recurrence risk[J]. IEEE Trans Med Imaging, 2013, 32(4):637-648.
|
21. |
CAI Hongmin, PENG Yanxia, OU Caiwen, et al. Diagnosis of breast masses from dynamic contrast-enhanced and diffusion-weighted MR:A machine learning approach[J]. PLoS One, 2014, 9(1):e87387.
|
22. |
AGNER S C, ROSEN M A, ENGLANDER S A, et al. Computerized image analysis for identifying triple-negative breast cancers and differentiating them from other molecular subtypes of breast cancer on dynamic contrast-enhanced MR images:a feasibility study[J]. Radiology, 2014, 272(1):91-99.
|
23. |
HEYE T, DAVENPORT M S, HORVATH J J, et al. Reproducibility of dynamic contrast-enhanced MR imaging part Ⅰ. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions[J]. Radiology, 2013, 266(3):801-811.
|
24. |
IRVING B, CIFOR A, PAPIEZ B L, et al. Automated colorectal tumour segmentation in DCE-MRI using supervoxel neighbourhood contrast characteristics[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014:17th International Conference. Boston:2014, Ⅰ:609-616.
|
25. |
FARJAM R, TSIEN C I, LAWRENCE T S, et al. DCE-MRI defined subvolumes of a brain metastatic lesion by principle component analysis and fuzzy-c-means clustering for response assessment of radiation therapy[J]. Med Phys, 2014, 41(1):011708.
|
26. |
WANG Yi, MORRELL G, HEIBRUN M E, et al. 3D multi-parametric breast MRI segmentation using hierarchical support vector machine with coil sensitivity correction[J]. Acad Radiol, 2013, 20(2):137-147.
|