1. |
RAHMAN F, KWAN G F, BENJAMIN E J. Global epidemiology of atrial fibrillation[J]. Nat Rev Cardiol, 2014, 11(11):639-654.
|
2. |
GUO Yutao, TIAN Yingchun, WANG Hao, et al. Prevalence, incidence, and lifetime risk of atrial fibrillation in China:new insights into the global burden of atrial fibrillation[J]. Chest, 2015, 147(1):109-119.
|
3. |
KILISZEK M, MIAZEK N, PELLER M, et al. Influence of left atrial size on the outcome of pulmonary vein isolation in patients with atrial fibrillation[J]. Kardiol Pol, 2014, 72(11):1135-1140.
|
4. |
KAUFMANN R, THEOPHILE U. Automatie-f rdernde Dehnungseffekte an Purkinje-Fäden, Papillarmuskeln und Vorhoftrabekeln von Rhesus-Affen[J]. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, 1967, 297(3):174-189.
|
5. |
DE JONG A M, VAN GELDER I C, VREESWIJK-BAUDOIN I, et al. Atrial remodeling is directly related to end-diastolic left ventricular pressure in a mouse model of ventricular pressure overload[J]. PLoS One, 2013, 8(9):e72651.
|
6. |
XU Yanmin, SHARMA D, LI Guangping, et al. Atrial remodeling:New pathophysiological mechanism of atrial fibrillation[J]. Med Hypotheses, 2013, 80(1):53-56.
|
7. |
PFEIFFER E R, WRIGHT A T, EDWARDS A G, et al. Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing[J]. J Mol Cell Cardiol, 2014, 76:265-274.
|
8. |
LAI Dongwu, XU Lin, CHENG Jun, et al. Stretch current-induced abnormal impulses in CaMKⅡδ knockout mouse ventricular myocytes[J]. J Cardiovasc Electrophysiol, 2013, 24(4):457-463.
|
9. |
WALTERS T E, LEE G, SPENCE S, et al. Acute atrial stretch results in conduction slowing and complex signals at the pulmonary vein to left atrial junction:insights into the mechanism of pulmonary vein arrhythmogenesis[J]. Circ Arrhythm Electrophysiol, 2014, 7(6):1189-1197.
|
10. |
BRESSAN M C, LOUIE J D, MIKAWA Takashi. Hemodynamic forces regulate developmental patterning of atrial conduction[J]. PLoS One, 2014, 9(12):e115207.
|
11. |
IWASAKI Y K, YAMASHITA Takeshi, SEKIGUCHI A, et al. Importance of pulmonary vein preferential fibrosis for atrial fibrillation promotion in hypertensive rat hearts[J]. Can J Cardiol, 2015.
|
12. |
SCHMIDT C, WIEDMANN F, VOIGT N, et al. Upregulation of K(2P)3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation[J]. Circulation, 2015, 132(2):82-92.
|
13. |
ÁGOSTON G, SZILÁGYI J, BENCSIK G, et al. Impaired adaptation to left atrial pressure increase in patients with atrial fibrillation[J]. J Interv Card Electrophysiol, 2015, 44(2):113-118.
|
14. |
JI Qiang, LIU Hua, MEI Yunqing, et al. Expression changes of Ionic channels in early phase of cultured rat atrial myocytes induced by rapid pacing[J]. J Cardiothorac Surg, 2013, 8:194.
|
15. |
PEDROZO Z, CRIOLLO A, BATTIPROLU P K, et al. Polycystin-1 is a cardiomyocyte mechanosensor that governs L-Type Ca2+ channel protein stability[J]. Circulation, 2015, 131(24):2131-2142.
|
16. |
ABRAMOCHKIN D V, LOZINSKY I T, KAMKIN A. Influence of mechanical stress on fibroblast-myocyte interactions in mammalian heart[J]. J Mol Cell Cardiol, 2014, 70:27-36.
|
17. |
IGARASHI T, FINET J E, TAKEUCHI A, et al. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation[J]. Circulation, 2012, 125(2):216-225.
|
18. |
HUSSAIN W, PATEL P M, CHOWDHURY R A, et al. The Renin-Angiotensin system mediates the effects of stretch on conduction velocity, connexin43 expression, and redistribution in intact ventricle[J]. J Cardiovasc Electrophysiol, 2010, 21(11):1276-1283.
|
19. |
HOOPER C L, PAUDYAL A, DASH P R, et al. Modulation of stretch-induced myocyte remodeling and gene expression by nitric oxide:a novel role for lipoma preferred partner in myofibrillogenesis[J]. Am J Physiol Heart Circ Physiol, 2013, 304(10):H1302-H1313.
|
20. |
GONZALES M J, VINCENT K P, RAPPEL W J, et al. Structural contributions to fibrillatory rotors in a patient-derived computational model of the atria[J]. Europace, 2014, 16(Suppl 4):iv3-iv10.
|
21. |
LU Y Y, CHEN Yaochang, KAO Y H, et al. Extracellular matrix of collagen modulates arrhythmogenic activity of pulmonary veins through p38 MAPK activation[J]. J Mol Cell Cardiol, 2013, 59:159-166.
|
22. |
KERKELÄ R, ILVES M, PIKKARAINEN S, et al. Key roles of endothelin-1 and p38 MAPK in the regulation of atrial stretch response[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300(1):R140-R149.
|
23. |
YAN Jiajie, KONG Wei, ZHANG Qiang, et al. c-Jun n-terminal kinase activation contributes to reduced connexin43 and development of atrial arrhythmias[J]. Cardiovasc Res, 2013, 97(3):589-597.
|
24. |
MARTINAC B. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity[J]. Biochim Biophys Acta, 2014, 1838(2):682-691.
|
25. |
CHOI W S, KHURANA A, MATHUR R, et al. Kv1.5 surface expression is modulated by retrograde trafficking of newly endocytosed channels by the dynein motor[J]. Circ Res, 2005, 97(4):363-371.
|
26. |
NATTEL S, HARADA M. Atrial remodeling and atrial fibrillation:recent advances and translational perspectives[J]. J Am Coll Cardiol, 2014, 63(22):2335-2345.
|
27. |
TSAI C T, CHIANG F T, TSENG C D, et al. Mechanical stretch of atrial myocyte monolayer decreases sarcoplasmic reticulum calcium adenosine triphosphatase expression and increases susceptibility to repolarization alternans[J]. J Am Coll Cardiol, 2011, 58(20):2106-2115.
|
28. |
SAYGILI E, RANA O R, MEYER C, et al. The angiotensin-calcineurin-NFAT pathway mediates stretch-induced up-regulation of matrix metalloproteinases-2/-9 in atrial myocytes[J]. Basic Res Cardiol, 2009, 104(4):435-448.
|
29. |
ZABLOCKI D, SADOSHIMA J. Solving the cardiac hypertrophy riddle:The angiotensin Ⅱ-mechanical stress connection[J]. Circ Res, 2013, 113(11):1192-1195.
|
30. |
LIN Li, TANG Chuyi, XU Jianfeng, et al. Mechanical stress triggers cardiomyocyte autophagy through angiotensin Ⅱ type 1 receptor-mediated p38MAP kinase independently of angiotensin Ⅱ[J]. PLoS One, 2014, 9(2):e89629.
|
31. |
HU Yuxuan, GUREV V, CONSTANTINO J, et al. Effects of mechano-electric feedback on scroll wave stability in human ventricular fibrillation[J]. PLoS One, 2013, 8(4):e60287.
|