1. |
FINAS D, BAUMANN K, SYDOW L, et al. SPIO detection and distribution in biological tissue--a murine MPI-SLNB breast cancer model[J]. IEEE Trans Magn, 2015, 51(2): 5400104.
|
2. |
董鸿瑞, 程虹,李泳,等.普鲁士蓝染色在肾活检病理诊断中的应用[J/CD].中华临床医师杂志,2012,6(20):6392-6394.
|
3. |
VERZIJL J M, JOORE H C, VAN DIJK A, et al. In vitro cyanide release of four prussian blue salts used for the treatment of cesium contaminated persons[J]. J Toxicol Clin Toxicol, 1993, 31(4): 553-562.
|
4. |
KAMERBEEK H H, RAUWS A G, TEN HAM M, et al. Prussian blue in therapy of thallotoxicosis. An experimental and clinical investigation[J]. Acta Med Scand, 1971, 189(4): 321-324.
|
5. |
FU Guanglei, LIU Wei, LI Yanyan, et al. Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance[J]. Bioconjug Chem, 2014, 25(9): 1655-1663.
|
6. |
CAI Xiaojun, GAO Wei, MA Ming, et al. A Prussian blue-based core-shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity[J]. Adv Mater, 2015, 27(41): 6382-6389.
|
7. |
CHENG Liang, GONG Hua, ZHU Wenwen, et al. PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy[J]. Biomaterials, 2014, 35(37): 9844-9852.
|
8. |
LIANG Xiaolong, DENG Zijian, JING Lijia, et al. Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging[J]. Chem Commun (Camb), 2013, 49(94): 11029-11031.
|
9. |
WU Ming, WANG Qingtang, LIU Xiaolong, et al. Highly efficient loading of doxorubicin in Prussian Blue nanocages for combined photothermal/chemotherapy against hepatocellular carcinoma[J]. RSC Adv, 2015, 5(39): 30970-30980.
|
10. |
SHOKOUHIMEHR M, SOEHNLEN E S, HAO J H, et al. Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: a new generation of T1-weighted MRI contrast and small molecule delivery agents[J]. Mater Chem, 2010, 20(25): 5251-5259.
|
11. |
HOFFMAN H A, CHAKRABARTI L, DUMONT M F, et al. Prussian blue nanoparticles for laser-induced photothermal therapy of tumors[J]. RSC Adv, 2014, 4(56): 29729-29734.
|
12. |
DUMONT M F, YADAVILLI S, SZE R W, et al. Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors[J]. Int J Nanomedicine, 2014, 9: 2581-2595.
|
13. |
LI Xiaoda, LIANG Xiaolong, MA Fang, et al. Chitosan stabilized Prussian blue nanoparticles for photothermally enhanced gene delivery[J]. Colloids Surf B Biointerfaces, 2014, 123: 629-638.
|
14. |
ZHU Wenwen, LIU Kai, SUN Xiaoqi, et al. Mn2+-doped Prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance[J]. ACS Appl Mater Interfaces, 2015, 7(21): 11575-11582.
|
15. |
FU Guanglei, LIU Wei, FENG Shanshan, et al. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy[J]. Chem Commun (Camb), 2012, 48(94): 11567-11569.
|
16. |
XUE Peng, BAO Jingnan, WU Yafeng, et al. Magnetic Prussian blue nanoparticles for combined enzyme-responsive drug release and photothermal therapy[J]. RSC Adv, 2015, 5(36): 28401-28409.
|
17. |
LI Zhenglin, ZENG Yongyi, ZHANG Da, et al. Glypican-3 antibody functionalized Prussian blue nanoparticles for targeted MR imaging and photothermal therapy of hepatocellular carcinoma[J]. Journal of Materials Chemistry B, 2014, 2(23): 3686-3696.
|
18. |
SHOKOUHIMEHR M, SOEHNLEN E S, KHITRIN A, et al. Biocompatible Prussian blue nanoparticles: preparation, stability, cytotoxicity, and potential use as an MRI contrast agent[J]. Inorg Chem Commun, 2010, 13(1): 58-61.
|
19. |
刘伟. 透明质酸修饰的普鲁士蓝纳米粒子的制备及光热性能研究[D].哈尔滨:哈尔滨工业大学,2014.
|
20. |
CAI Xiaojun, JIA Xiaoqing, GAO Wei, et al. A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy[J]. Adv Funct Mater, 2015, 25(17): 2520-2529.
|
21. |
JING Lijia, SHAO Shangmin, WANG Yang, et al. Hyaluronic acid modified hollow Prussian blue nanoparticles loading 10-hydroxycamptothecin for targeting thermochemotherapy of cancer[J]. Theranostics, 2016, 6(1): 40-53.
|
22. |
ZAKARIA M B, BELIK A A, LIU C H, et al. Prussian blue derived nanoporous iron oxides as anticancer drug carriers for magnetic-guided chemotherapy[J]. Chem Asian J, 2015, 10(7): 1457-1462.
|
23. |
JIA Xiaoqing, CAI Xiaojun, CHEN Yu, et al. Perfluoropentane-encapsulated hollow mesoporous Prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer[J]. ACS Appl Mater Interfaces, 2015, 7(8): 4579-4588.
|
24. |
KANAZAKI K, SANO K, MAKINO A, et al. Development of anti-HER2 fragment antibody conjugated to iron oxide nanoparticles for in vivo HER2-targeted photoacoustic tumor imaging[J]. Nanomedicine, 2015, 11(8): 2051-2060.
|
25. |
WANG Guohao, ZHANG Fan, TIAN Rui, et al. Nanotubes-embedded indocyanine green-hyaluronic acid nanoparticles for photoacoustic-imaging-guided phototherapy[J]. ACS Appl Mater Interfaces, 2016, 8(8): 5608-5617.
|
26. |
JING Lijia, LIANG Xiaolong, DENG Zijian, et al. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer[J]. Biomaterials, 2014, 35(22): 5814-5821.
|
27. |
ZHONG H X, WEI Y, YUE Y Z, et al. Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction[J]. Nanotechnilogy, 2016, 27(13): 135701.
|
28. |
ZHA Zhengbao, ZHANG Shuhai, DENG Zijian, et al. Enzyme-responsive copper sulphide nanoparticles for combined photoacoustic imaging, tumor-selective chemotherapy and photothermal therapy[J]. Chem Commun (Camb), 2013, 49(33): 3455-3457.
|
29. |
YANG X Y, ZHOU Z G, WANG L, et al. Folate conjugated Mn3O4@SiO2 nanoparticles for targeted magnetic resonance imaging in vivo[J]. Mater Res Bull, 2014, 57: 97-102.
|
30. |
HU He, DAI Antao, SUN Jin, et al. Aptamer-conjugated Mn3O4@SiO2 core-shell nanoprobes for targeted magnetic resonance imaging[J]. Nanoscale, 2013, 5(21): 10447-10454.
|
31. |
DU Bin, CAO Xiaohui, ZHAO Feifei, et al. Multimodal imaging-guided, dual-targeted photothermal therapy for cancer[J]. Journal of Materials Chemistry B, 2016, 4(11): 2038-2050.
|
32. |
LI Zhenglin, HU Ying, JIANG Tingting, et al. Human-serum-albumin-coated Prussian blue nanoparticles as pH-/thermotriggered drug-delivery vehicles for cancer thermochemotherapy[J]. Part Part Syst Charact, 2016, 33(1): 53-62.
|