1. |
Schmidt E M, Mcintosh J S, Durelli L, et al. Fine control of operantly conditioned firing patterns of cortical-neurons. Exp Neurol, 1978, 61(2): 349-369.
|
2. |
王行愚, 金晶, 张宇, 等. 脑控: 基于脑-机接口的人机融合控制. 自动化学报, 2013, 39(3): 208-221.
|
3. |
伏云发, 王越超, 李洪谊, 等. 直接脑控机器人接口技术. 自动化学报, 2012, 38(8): 1229-1246.
|
4. |
Miller K J, Schalk G, Fetz E E, et al. Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci U S A, 2010, 107(15): 7113-7113.
|
5. |
Li J H, Zhang L Q. Bilateral adaptation and neurofeedback for brain computer interface system. J Neurosci Methods, 2010, 193(2): 373-379.
|
6. |
Choi K, Electroencephalography (EEG)-based neurofeedback training for brain-computer interface (BCI). Experimental Brain Research, 2014, 232(3): 1071-1071.
|
7. |
Kondo T, Saeki M, Hayashi Y A, et al. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface. Hum Mov Sci, 2015, 43: 239-249.
|
8. |
Roberts R, Callow N, Hardy L, et al. Movement imagery ability: development and assessment of a revised version of the vividness of movement imagery questionnaire. J Sport Exerc Psychol, 2008, 30(2): 200-221.
|
9. |
Auer T, Schweizer R, Frahm J. Training efficiency and transfer success in an extended real-time functional MRI neurofeedback training of the somatomotor cortex of healthy subjects. Front Hum Neurosci, 2015, 9: 1-14.
|
10. |
Thibault R T, Lifshitz M, Raz A. The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex, 2016, 74: 247-261.
|
11. |
Gomez-Pilar J, Corralejo R, Nicolas-Alonso L F, et al. Assessment of neurofeedback training by means of motor imagery based-BCI for cognitive rehabilitation//2014 36th annual international conference of the IEEE engineering in medicine and biology society (EMBC), 2014: 3630-3633.
|
12. |
Neuper C, Scherer R, Wriessnegger S, et al. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin Neurophysiol, 2009, 120(2): 239-247.
|
13. |
Neuper C, Schlogl A, Pfurtscheller G. Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery. Journal of Clinical Neurophysiology, 1999, 16(4): 373-382.
|
14. |
Yu Tianyou, Xiao Jun, Wang Fangyi, et al. Enhanced motor imagery training using a hybrid BCI with feedback. IEEE Trans Biomed Eng, 2015, 62(7): 1706-1717.
|
15. |
Hwang H J, Kwon K, Im C H. Neurofeedback-based motor imagery training for brain-computer interface (BCI). J Neurosci Methods, 2009(1): 150-156.
|
16. |
Alvarez-Meza A M, Velasquez-Martinez L F, Castellanos Dominguez G. Time-series discrimination using feature relevance analysis in motor imagery classification. Neurocomputing, 2015, 151(1): 122-129.
|
17. |
Witte M, Kober S E, Ninaus M, et al. Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front Hum Neurosci, 2013, 7(7): 1-8.
|
18. |
吴小培, 周蚌艳, 张磊. 运动想象脑机-接口中的 ICA 滤波器设计. 生物物理学报, 2014, 30(7): 540-544.
|
19. |
Li Ma, Cui Y, Yang J F, et al. An adaptive multi-domain fusion feature extraction with method HHT and CSSD. Acta Electronica Sinica, 2013, 41(12): 2479-2486.
|
20. |
徐宝国, 彭思, 宋爱国. 基于运动想象脑电的上肢康复机器人. 机器人, 2011, 33(3): 307-313.
|
21. |
Fu K, Qu J F, Chai Y, et al. Classifcation of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed Signal Process Control, 2014, 13: 15-22.
|
22. |
孙会文, 伏云发, 熊馨, 等. 基于 HHT 运动想象脑电模式识别研究. 自动化学报, 2015, 41(9): 1686-1692.
|
23. |
Zhao Qibin, Zhang Liqing, Cichocki A. EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chinese Science Bulletin, 2009, 54(1): 78-87.
|
24. |
Xia B, Zhang Q M, Xie H. A neurofeedback training paradigm for motor imagery based Brain-Computer interface. International Joint Conference on Neural Networks (IJCNN), 2012.
|
25. |
Kus R, Valbuena D, Zygierewicz J, et al. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(6): 823-835.
|
26. |
Lee Y, Kim J, Lee S, et al. Characteristics of motor imagery based EEG-Brain computer interface using combined cue and neuro-feedback//32nd Annual International Conference of the IEEE EMBS Buenos Aires, 2010: 4238-4241.
|
27. |
Kreilinger A, Hiebel H, Mueller-Putz G R. Single versus multiple events error potential detection in a BCI-Controlled car game with continuous and discrete feedback. IEEE Trans Biomed Eng, 2016, 63(3): 519-529.
|
28. |
Lee P L, Chang H C, Hsieh T Y, et al. A brain-wave-actuated small robot car using ensemble empirical mode decomposition-based approach. IEEE Transactions on Systems Man and Cybernetics Part A: Systems and Humans, 2012, 42(5): 1053-1064.
|
29. |
Shu Xiaokang, Yao Lin, Meng Jianjun, et al. Visual stimulus background effects on SSVEP-Based BCI towards a practical robot car control. International Journal of Humanoid Robotics, 2015, 12(2, SI): 155001-155014.
|