1. |
Jiang Weicheng, Cheng Yuhao, Yen M H, et al. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials, 2014, 35(11): 3607-3617.
|
2. |
Yang Lei, Liu Haipei, Lin Yuan. Biomaterial nanotopography-mediated cell responses: experiment and modeling. Int J Smart Nano Mater, 2015, 5(4): 227-256.
|
3. |
Chen Weiqiang, Shao Yue, Li Xiang, et al. Nanotopographical surfaces for stem cell fate control: Engineering mechanobiology from the Bottom. Nano Today, 2014, 9(6): 759-784.
|
4. |
Ao Chenghong, Niu Yan, Zhang Ximu, et al. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int J Biol Macromol, 2017, 97: 568-573.
|
5. |
Shahnavazi M, Ketabi M A, Fekrazad R, et al. Fabrication of Chitosan-nano hydroxyapatite scaffold for dental tissue engineering. Key Eng Mater, 2017, 720: 223-227.
|
6. |
Atak B H, Buyuk B, Huysal M, et al. Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydr Polym, 2017, 164: 200-213.
|
7. |
Oseni A O, Butler P E, Seifalian A M. The application of POSS nanostructures in cartilage tissue engineering: the chondrocyte response to nanoscale geometry. J Tissue Eng Regen Med, 2015, 9(11): E27-E38.
|
8. |
Zulkifli F H, Hussain F S J, Zeyohannes S S, et al. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater Sci Eng C Mater Biol Appl, 2017, 79: 151-160.
|
9. |
Yang H S, Lee B, Tsui J H, et al. Electroconductive nanopatterned substrates for enhanced myogenic differentiation and maturation. Adv Healthc Mater, 2016, 5(1): 137-145.
|
10. |
Teo B K, Wong S T, Lim C K, et al. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano, 2013, 7(6): 4785-4798.
|
11. |
Biggs M J, Richards R G, Gadegaard N, et al. Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J Biomed Mater Res A, 2009, 91(1): 195-208.
|
12. |
Loger K, Engel A, Haupt J, et al. Cell adhesion on NiTi thin film sputter-deposited meshes. Mater Sci Eng C Mater Biol Appl, 2016, 59: 611-616.
|
13. |
Lin Manping, Wang Huaiyu, Ruan Changshun, et al. Adsorption force of fibronectin on various surface chemistries and its vital role in osteoblast adhesion. Biomacromolecules, 2015, 16(3): 973-984.
|
14. |
Mcbeath R, Pirone D M, Nelson C M, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 2004, 6(4): 483-495.
|
15. |
de Peppo G M, Agheli H, Karlsson C, et al. Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro. Int J Nanomedicine, 2014, 9(1): 2499-2515.
|
16. |
Luo Yu, Shen He, Fang Yongxiang, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces, 2015, 7(11): 6331-6339.
|
17. |
Hosseinkhani H, Hosseinkhani M, Kobayashi H. Proliferation and differentiation of mesenchymal stem cells using self-assembled peptide amphiphile nanofibers. Biomed Mater, 2006, 1(1): 8-15.
|
18. |
Xiao Qianru, Zhang Ning, Wang Xi, et al. Oriented surface nanotopography promotes the osteogenesis of mesenchymal stem cells. Adv Mater Interface, 2016. DOI: 10.1002/admi.201600652.
|
19. |
Abagnale G, Steger M, Nguyen V H, et al. Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials, 2015, 61: 316-326.
|
20. |
McCafferty M M, Burke G A, Meenan B J. Calcium phosphate thin films enhance the response of human mesenchymal stem cells to nanostructured Titanium surfaces. J Tissue Eng, 2014, 5: 2041731414537513. DOI: 10.1177/2041731414537513.
|
21. |
Baboolal T G, Mastbergen S C, Jones E, et al. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction. Ann Rheum Dis, 2016, 75(5): 908-915.
|
22. |
Toh W S, Lai R C, Hui J H, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Semin Cell Dev Biol, 2017, 67: 56-64.
|
23. |
Gao Lin, Mcbeath R, Chen C S. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells, 2010, 28(3): 564-572.
|
24. |
Zhong Weiliang, Zhang Weiguo, Wang Shouyu, et al. Regulation of fibrochondrogenesis of mesenchymal stem cells in an integrated microfluidic platform embedded with biomimetic nanofibrous scaffolds. PLoS One, 2013, 8(4): e61283.
|
25. |
Wu Yingnan, Law J B, He Aiyu, et al. Substrate topography determines the fate of chondrogenesis from human mesenchymal stem cells resulting in specific cartilage phenotype formation. Nanomedicine, 2014, 10(7): 1507-1516.
|
26. |
Trujillo N A, Popat K C. Increased adipogenic and decreased chondrogenic differentiation of adipose derived stem cells on nanowire surfaces. Materials (Basel, Switzerland), 2014, 7(4): 2605-2630.
|
27. |
Salmasi S, Kalaskar D M, Yoon W W, et al. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells. World J Stem Cells, 2015, 7(2): 266-280.
|
28. |
Sundaramurthi D, Krishnan U M, Sethuraman S. Electrospun nanofibers as scaffolds for skin tissue engineering. Polymer Reviews, 2014, 54(2): 348-376.
|
29. |
Kim J, Kim H N, Lim K T, et al. Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells. Sci Rep, 2013, 3: 3552.
|
30. |
Jin G, Prabhakaran M P, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater, 2011, 7(8): 3113-3122.
|
31. |
Li Jingan, Qin Wei, Zhang Kun, et al. Controlling mesenchymal stem cells differentiate into contractile smooth muscle cells on a TiO2 micro/nano interface: Towards benign pericytes environment for endothelialization. Colloids Surf B Biointerfaces, 2016, 145: 410-419.
|
32. |
Moghadasi Boroujeni S, Mashayekhan S, Vakilian S, et al. The synergistic effect of surface topography and sustained release of TGF-β1 on myogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A, 2016, 104(7): 1610-1621.
|
33. |
Khattak M, Pu Fanrong, Curran J M, et al. Human mesenchymal stem cell response to poly(ε-caprolactone/poly(methyl methacrylate) demixed thin films. J Mater Sci Mater Med, 2015, 26(5): 178.
|