1. |
国家心血管病中心. 中国心血管病报告 2014. 北京: 中国大百科全书出版社, 2015: 1-189.
|
2. |
Tchantchaleishvili V, Luc J G, Cohan C M, et al. Clinical implications of physiologic flow adjustment in Continuous-Flow left ventricular assist devices. ASAIO Journal, 2017, 63(3): 241-250.
|
3. |
Kadakia S, Moore R, Ambur V, et al. Current status of the implantable LVAD. Gen Thorac Cardiovasc Surg, 2016, 64(9): 501-508.
|
4. |
Pauls J P, Stevens M C, Bartnikowski N A, et al. Evaluation of physiological control systems for rotary left ventricular assist devices: an <italic>in-vitro</italic> study. Ann Biomed Eng, 2016, 44(8): 2377-2387.
|
5. |
Arakawa M, Nishimura T, Takewa Y, et al. Pulsatile support using a rotary left ventricular assist device with an electrocardiography-synchronized rotational speed control mode for tracking heart rate variability. J Artif Organs, 2016, 19(2): 204-207.
|
6. |
May-Newman K, Fisher B, Hara M, et al. Mitral valve regurgitation in the LVAD-Assisted heart studied in a mock circulatory loop. Cardiovasc Eng Technol, 2016, 7(2): 139-147.
|
7. |
Reesink K, Dekker A, van der Nagel T, et al. Suction due to left ventricular assist: Implications for device control and management. Artif Organs, 2007, 31(7): 542-549.
|
8. |
Simaan M A, Ferreira A, Chen S, et al. A dynamical state space representation and performance analysis of a Feedback-Controlled rotary left ventricular assist device. IEEE Transactions on Control Systems Technology, 2009, 17(1): 15-28.
|
9. |
Wang Yu, Koenig S C, Slaughter M S, et al. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters. ASAIO Journal, 2015, 61(2): 170-177.
|
10. |
Tayama E, Ohashi Y, Niimi Y, et al. Estimation of the minimum pump speed to prevent regurgitation in the continuous flow left ventricular assist device:left ventricular drainage versus left atrial drainage. Artif Organs, 1997, 21(12): 1288-1291.
|
11. |
Tayama E, Ohashi Y, Niimi Y, et al. The safety system for the rotary blood pump, combination of the valve and LVAD pulsatile mode: <italic>in vitro</italic> test. Artif Organs, 1998, 22(4): 342-345.
|
12. |
Yuhki A, Hatoh E, Nogawa M, et al. Detection of suction and regurgitation of the implantable centrifugal pump based on the motor current waveform analysis and its application to optimization of pump flow. Artif Organs, 1999, 23(6): 532-537.
|
13. |
Ando M, Nishimura T, Takewa Y, et al. A novel counterpulse drive mode of continuous-flow left ventricular assist devices can minimize intracircuit backward flow during pump weaning. J Artif Organs, 2011, 14(1): 74-79.
|
14. |
王芳群, 徐庆, 吴振海, 等. 基于左心辅助的血液循环系统的控制研究. 生物医学工程学杂志, 2016, 33(6): 1075-10830.
|
15. |
Goldwyn R M, Watt T B. Arterial pressure pulse contour analysis via a mathematical model for clinical quantification of human vascular properties. IEEE Trans Biomed Eng, 1967, BM14(1): 11-17.
|
16. |
温太阳, 王芳群, 王颢, 等. 基于二尖瓣时变电阻模型的左心血液循环系统建模与仿真. 中国生物医学工程学报, 2015, 34(3): 370-3750.
|
17. |
Gao Bin, Gu Kaiyun, Zeng Yi, et al. An Anti-Suction control for an Intra-Aorta pump using blood assistant index: a numerical simulation. Artif Organs, 2012, 36(3): 275-U183.
|
18. |
Tanaka A, Yoshizawa M, Olegario P, et al. Detection and avoiding ventricular suction of ventricular assist devices. Conf Proc IEEE Eng Med Biol Soc, 2005, 1(1): 402-405.
|
19. |
吴根茂. 动态封闭容腔及其压力基本公式. 流体传动与控制, 2007(3): 54-560.
|
20. |
莫尔曼, 海勒. 心血管生理学. 天津: 天津科技翻译出版公司, 2010: 1-251.
|
21. |
Bozkurt S, Safak K K. Evaluating the hemodynamical response of a cardiovascular system under support of a continuous flow left ventricular assist device via numerical modeling and dimulations. Comput Math Methods Med, 2013(3): 986430.
|
22. |
Faragallah G. Treatment-specific approaches for analysis and control of left ventricular assist devices. Orlando: University of Central Florida, 2014.
|