1. |
Huang Y, Han S, Pang X, et al. Electro deposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications. Appl Surf Sci, 2013, 271(6): 299-302.
|
2. |
Qiao Feng, Li Dichen, Jin Zhongmin, et al. Application of 3D printed customized external fixator in fracture reduction. Injury, 2015, 46(6): 1150-1155.
|
3. |
Cohen J, Reyes S A. Creation of a 3D printed temporal bone model from clinical CT data. Am J Otolaryngol, 2015, 36(5): 619-624.
|
4. |
胡堃, 李路海, 余均武, 等. 3D 打印技术在骨科个性化治疗中的应用. 高分子通报, 2015(9): 61-70.
|
5. |
杨永强, 宋长辉, 王迪. 激光选区熔化技术及其在个性化医学中的应用. 机械工程学报, 2014(21): 140-151.
|
6. |
罗丽娟, 余森, 于振涛, 等. 3D 打印钛合金人体植入物的应用与研究. 钛工业进展, 2015(5): 1-6.
|
7. |
罗丽娟, 余森, 于振涛, 等. 3D 打印钛及钛合金医疗器械的优势及临床应用现状. 生物骨科材料与临床研究, 2015, 12(6): 72-75.
|
8. |
邱冰, 张明娇, 唐本森, 等. 基于 3D 打印个性化手术导航模板辅助下的人工全膝关节置换. 中国组织工程研究, 2015, 19(48): 7731-7735.
|
9. |
Shah F A, Snis A, Matic A, et al. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomater, 2016, 30: 357-367.
|
10. |
Cunningham R, Narra S P, Ozturk T, et al. Evaluating the effect of processing parameters on porosity in electron beam melted Ti-6Al-4V via synchrotron X-ray microtomography. JOM, 2016, 68(3): 765-771.
|
11. |
Güenther J, Krewerth D, Lippmann T, et al. Fatigue Life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime. Int J Fatigue, 2017, 94(2, SI): 236-245.
|
12. |
Sterling A, Shamsaei N, Torries B, et al. Fatigue behaviour of additively manufactured Ti-6Al-4V. Procedia Engineering, 2015, 133: 576-589.
|
13. |
Seifi M, Salem A, Satko D, et al. Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti-6Al-4V. Int J Fatigue, 2017, 94(2, SI): 263-287.
|
14. |
Guo Ruipeng, Xu Lei, Wu Jie, et al. Microstructural evolution and mechanical properties of powder metallurgy Ti-6Al-4V alloy based on heat response. Materials Science and Engineering A, 2015, 639: 327-334.
|
15. |
Chen Xiaojun, Xu Lu, Wang Yiping, et al. Image-guided installation of 3D-printed patient-specific implant and its application in pelvic tumor resection and Reconstruction surgery. Comput Methods Programs Biomed, 2016, 125: 66-78.
|
16. |
Kim Y C, Jeong W S, Park T K, et al. The accuracy of patient specific implant prebented with 3D-printed rapid prototype model for orbital wall reconstruction. J Craniomaxillofac Surg, 2017, 45(6): 928-936.
|
17. |
Limmahakhun S, Oloyede A, Sitthiseripratip K, et al. 3D-printed cellular structures for bone biomimetic implants. Additive Manufacturing, 2017, 15: 93-101.
|
18. |
Palmquist A, Shah F A, Emanuelsson L, et al. A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry. Micron, 2017, 94: 1-8.
|
19. |
Lenders S, Thöene M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int J Fatigue, 2013, 48(3): 300-307.
|
20. |
Benedetti M, Cazzolli M, Fontanari V, et al. Fatigue limit of Ti6Al4V alloy produced by Selective Laser Sintering. Procedia Structural Integrity, 2016, 2: 3158-3167.
|
21. |
Plessis A D, Roux S G L, Els J, et al. Application of microCT to the non-destructive testing of an additive manufactured titanium component. Case Studies in Nondestructive Testing & Evaluation, 2015, 4: 1-7.
|
22. |
万谦, 赵海东, 葛继龙. 微观孔洞对铝合金压铸件疲劳性能的影响. 中国有色金属学报, 2015, 25(3): 568-574.
|
23. |
Gao Y X, Yi J Z, Lee P D, et al. The effect of porosity on the fatigue life of cast aluminium-silicon alloys. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(7): 559-570.
|
24. |
Mo Defeng, He Guoqiu, Hu Zhengfei, et al. Crack initiation and propagation of cast A356 aluminum alloy under multi-axial cyclic loadings. Int J Fatigue, 2008, 30(10/11): 1843-1850.
|
25. |
Gerard D A, Koss D A. The influence of porosity on short fatigue crack growth at large strain amplitudes. Int J Fatigue, 1991, 13(4): 345-352.
|
26. |
Borbély A, Mughrabi H, Eisenmeier G, et al. A finite element modelling study of strain localization in the vicinity of near-surface cavities as a cause of subsurface fatigue crack initiation. International Journal of Fracture, 2002, 115(3): 227-232.
|
27. |
杨正伟, 刘国权. 一种定量描述点的空间分布的新方法. 解剖学杂志, 1995(2): 89-92.
|
28. |
Antonysamy A A, Meyer J, Prangnell P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting. Materials Characterization, 2013, 84: 153-168.
|
29. |
Al-Bermani S S, Blackmore M L, Zhang W, et al. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V. Metallurgical and Materials Transactions A, 2010, 41(13): 3422-3434.
|
30. |
Minjares J, Mireles J, Gaytan S M, et al. Installation and thermal feedback from a multi-wavelength pyrometer in electron beam melting// Proceedings of 25th Annual International Solid Freeform Fabrication Symposium. Austin: University of Texas, 2014: 288-297.
|
31. |
Price S, Lydon J, Cooper K, et al. Experimental temperature analysis of powder-based electron beam additive manufacturing// Proceedings of 24th Annual International Solid Freeform Fabrication Symposium. Austin: University of Texas, 2013: 162-173.
|