1. |
Leeb R, Tonin L, Rohm M, et al. Towards independence: a BCI telepresence robot for people with severe motor disabilities. Proceedings of the IEEE, 2015, 103(6, SI): 969-982.
|
2. |
Frolov A A, Húsek D, Biryukova E V, et al. Principles of motor recovery in post-stroke patients using hand exoskeleton controlled by the brain-computer interface based on motor imagery. Neural Network World, 2017, 27(1): 107-137.
|
3. |
He Bin, Baxter B, Edelman B J, et al. Noninvasive brain-computer interfaces based on sensorimotor rhythms. Proceedings of the IEEE, 2015, 103(6, SI): 907-925.
|
4. |
Pichiorri F, Morone G, Petti M, et al. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol, 2015, 77(5): 851-865.
|
5. |
Pattnaik P K, Sarraf J. Brain Computer Interface issues on hand movement. Journal of King Saud University–Computer and Information Sciences, 2018, 30(1): 18-24.
|
6. |
明东, 肖晓琳, 汤佳贝, 等. 基于异步并行诱发策略的混合范式脑-机接口技术. 纳米技术与精密工程, 2015, 13(5): 333-338.
|
7. |
Min B K, Chavarriaga R, Millán J D R. Harnessing prefrontal cognitive signals for brain-machine interfaces. Trends Biotechnol, 2017, 35(7): 585-597.
|
8. |
Yuan Han, He Bin. Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans Biomed Eng, 2014, 61(5): 1425-1435.
|
9. |
Yi Weibo, Qiu Shuang, Qi Hongzhi, et al. EEG feature comparison and classification of simple and compound limb motor imagery. J Neuroeng Rehabil, 2013, 10(1): 106.
|
10. |
Yi Weibo, Qiu Shuang, Wang Kun, et al. EEG oscillatory patterns and classification of sequential compound limb motor imagery. J Neuroeng Rehabil, 2016, 13(1): 11.
|
11. |
Ang K K, Guan C. EEG-based strategies to detect motor imagery for control and rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(4): 392-401.
|
12. |
Aricó P, Borghini G, Di Flumeri G A, et al. Passive BCI in operational environments: insights, recent advances, and future trends. IEEE Trans Biomed Eng, 2017, 64(7): 1431-1436.
|
13. |
Sánchez A M, Gaume A, Dreyfus G, et al. A cognitive brain-computer interface prototype for the continuous monitoring of visual working memory load. IEEE International Workshop on Machine Learning for Signal Processing, 2015: 7324370.
|
14. |
Iturrate I, Chavarriaga R, Montesano L, et al. Teaching brain-machine interfaces as an alternative paradigm to neuroprosthetics control. Scientific Reports, 2015, 5: 13893.
|
15. |
Khan M J, Hong K S. Hybrid EEG-fNIRS-based eight-command decoding for BCI: application to quadcopter control. Frontiers in Neurorobotics, 2017, 11: 6.
|
16. |
Hauschild M, Mulliken G H, Fineman I, et al. Cognitive signals for brain-machine interfaces in posterior parietal cortex include continuous 3D trajectory commands. Proc Natl Acad Sci U S A, 2012, 109(42): 17075-17080.
|
17. |
Aflalo T, Kellis S, Klaes C, et al. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science, 2015, 348(6237): 906-910.
|
18. |
Ryun S, Kim J S, Lee S H, et al. Movement type prediction before its onset using signals from prefrontal area: an electrocorticography study. Biomed Research International, 2014, 2014(8): 783203.
|
19. |
Zhang Z, Jiao X, Jiang J, et al. Passive BCI based on sustained attention detection: an fNIRS study//Liu C L, Hussain A, Luo B, et al. International Conference on Brain Inspired Cognitive Systems: Advances in Brain Inspired Cognitive Systems. BICS 2016. Lecture Notes in Computer Science. Cham: Springer, 2016, 10023: 220-227.
|
20. |
Shin J, Müller K R, Hwang H J. Near-infrared spectroscopy (NIRS)-based eyes-closed brain-computer interface (BCI) using prefrontal cortex activation due to mental arithmetic. Scientific Reports, 2016, 6: 36203.
|
21. |
Khan M J, Hong M J, Hong K S. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front Hum Neurosci, 2014, 8(1): 244.
|
22. |
Hong K S, Naseer N, Kim Y H. Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI. Neurosci Lett, 2015, 587: 87-92.
|
23. |
Naseer N, Hong K S. Decoding answers to four-choice questions using functional near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 2015, 23(1): 23-31.
|
24. |
Aziz F, Arof H, Mokhtar N, et al. HMM based automated wheelchair navigation using EOG traces in EEG. J Neural Eng, 2014, 11(5): 056018.
|
25. |
Chen Lanlan, Zhao Yu, Zhang Jian, et al. Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst Appl, 2015, 42(21): 7344-7355.
|
26. |
Lew E Y L, Chavarriaga R, Silvoni S, et al. Single trial prediction of self-paced reaching directions from EEG signals. Front Neurosci, 2014, 8(1): 222.
|
27. |
Jayaram V, Hohmann M, Just J, et al. Task-induced frequency modulation features for brain-computer interfacing. J Neural Eng, 2017, 14(5): 056015.
|
28. |
Hong K S, Khan M J. Hybrid brain-computer interface techniques for improved classification accuracy and increased number of commands: a review. Frontiers in Neurorobotics, 2017, 11: 35.
|
29. |
Naseer N, Hong K S. fNIRS-based brain-computer interfaces: a review. Front Hum Neurosci, 2015, 9: 3.
|
30. |
Sood M, Besson P, Muthalib M, et al. NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model. J Neurosci Methods, 2016, 274: 71-80.
|
31. |
Guhathakurta D, Dutta A. Computational pipeline for NIRS-EEG joint imaging of tDCS-evoked cerebral responses-an application in ischemic stroke. Frontiers in Neuroscience, 2016, 10: 261.
|
32. |
Fomina T, Schölkopf B, Grosse-Wentrup M. Towards cognitive brain-computer interfaces for patients with amyotrophic lateral sclerosis//Proceedings of 7th Computer Science and Electronic Engineering Conference. New York: IEEE, 2015: 77-80. DOI: 10.1109/CEEC.2015.7332703.
|
33. |
Fomina T, Lohmann G, Erb M, et al. Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS. J Neural Eng, 2016, 13(6): 066021.
|
34. |
Hohmann M R, Fomina T, Jayaram V, et al. A cognitive brain-computer interface for patients with amyotrophic lateral sclerosis. Prog Brain Res, 2016, 228: 221-239.
|
35. |
刘亚男, 陈元园, 沙淼, 等. 静息态功能连接网络对大脑不同水平认知衰退的研究进展. 生物医学工程学杂志, 2017, 34(4): 632-636.
|
36. |
Anguera J A, Boccanfuso J, Rintoul J L, et al. Video game training enhances cognitive control in older adults. Nature, 2013, 501(7465): 97-101.
|
37. |
Edelman B J, Baxter B, He Bin. EEG source imaging enhances the decoding of complex Right-Hand motor imagery tasks. IEEE Trans Biomed Eng, 2016, 63(1, SI): 4-14.
|