1. |
于家傲. 皮肤修复材料的发展历程-理念与技术的融合. 中华损伤与修复杂志, 2011, 6(1): 12-15.
|
2. |
王彤华, 周雄丽, 谢利勤, 等. 湿性敷料在伤口护理中的应用进展. 齐齐哈尔医学院学报, 2016, 37(24): 3078-3079.
|
3. |
刘公洪, 廖毅. 湿性敷料治疗在烧伤创面的应用进展. 西南军医, 2012, 14(1): 113-114.
|
4. |
Kamoun E A, Kenawy E S, Chen Xin. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res, 2017, 8(3): 217-233.
|
5. |
Eberlein T, Gerke P, Lorenzc H, et al. Advantages in wound healing by a topical easy to use wound healing lipo-gel for abrasive wounds—Evidence from a randomized, controlled experimental clinical study. Wound Medicine, 2016, 15: 11-19.
|
6. |
冯占录, 张兴宏, 赵燕玲. 湿性治疗技术救治26例烧伤病人的体会//第七届全国烧伤创疡学术会议论文汇编. 北京: 中国中西医结合学会烧伤专业委员会, 2002: 107.
|
7. |
陈晓洁, 吕爱凤, 高晶, 等. 功能敷料的" 伤口湿润环境愈合”理论与实践. 生物医学工程学进展, 2013, 34(1): 31-34.
|
8. |
江敏君, 邱玉友, 廖新芳. 烧伤创面应用湿性愈合疗法的效果观察与成本效益分析. 实用医学杂志, 2014, 30(15): 2523-2524.
|
9. |
钱程. 壳聚糖纤维医用敷料的生产及应用. 纺织学报, 2006, 27(11): 100-105.
|
10. |
马艳红. 耗材产业:" 增速换挡期”注重动力转换. 中国医药报, 2016-08-04(3).
|
11. |
马东东, 周玉杰, 路婷婷, 等. 组织工程皮肤研究现状. 现代生物医学进展, 2014, 14(6): 1183-1187.
|
12. |
郝文丽, 张平, 吴训伟. 组织工程皮肤的现状和展望. 北京生物医学工程, 2016, 35(1): 94-99.
|
13. |
杨维, 崔占峰. 组织工程皮肤发展现状. 中国科学: 生命科学, 2015, 45(5): 460-470.
|
14. |
林越威, 曾辉宇, 刘啸宇, 等. 三维打印技术在人工器官生产上的应用. 生物医学工程学杂志, 2015, 32(5): 1160-1164.
|
15. |
罗文峰, 杨雪香, 敖宁建. 生物医用材料的3D打印技术与发展. 材料导报, 2016, 30(7): 81-86.
|
16. |
邓滨, 欧阳汉斌, 黄文华. 3D打印在医学领域的应用进展. 中国医学物理学杂志, 2016, 33(4): 389-392.
|
17. |
魏玉雪, 刘晓秋, 李迪, 等. 3D打印技术在细胞打印方面的应用与发展. 海南医学, 2017, 28(5): 801-804.
|
18. |
田晓红, 张彬, 房艳, 等. 大鼠脂肪源性干细胞与三维打印明胶支架的兼容性. 解剖学报, 2017, 48(2): 209-216.
|
19. |
工业和信息化部, 发展改革委, 教育部, 等. 增材制造产业发展行动计划(2017~2020年). 铸造设备与工艺, 2018(2): 59-63.
|
20. |
刘凤珍, 刘明信, 王运华, 等. 3D打印技术在医学领域中的应用研究进展. 中国材料进展, 2016, 35(5): 381-385.
|
21. |
Stansbury J W, Idacavage M J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater, 2016, 32(1): 54-64.
|
22. |
Kim K, Park J, Suh J H, et al. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens Actuators A Phys, 2017, 263: 493-500.
|
23. |
Liu Wei, Wang Daming, Huang Jianghong, et al. Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 2): 976-982.
|
24. |
Hung K C, Tseng C S, Dai L G, et al. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials, 2016, 83: 156-168.
|
25. |
Mohanty S, Sanger K, Heiskanen A, et al. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Mater Sci Eng C Mater Biol Appl, 2016, 61: 180-189.
|
26. |
Muwaffak Z, Goyanes A, Clark V, et al. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm, 2017, 527(1/2): 161-170.
|
27. |
Cheng Y L, Chen F. Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application. Materials Science and Engineering: C, 2017, 81: 66-73.
|
28. |
Bégin-Drolet A, Dussault M A, Fernandez S A, et al. Design of a 3D printer head for additive manufacturing of sugar glass for tissue engineering applications. Additive Manufacturing, 2017, 15: 29-39.
|
29. |
Munaz A, Vadivelu R K, John J S, et al. Three-dimensional printing of biological matters. Journal of Science: Advanced Materials and Devices, 2016, 1(1): 1-17.
|
30. |
Włodarczyk-Biegun M K, Del Campo A. 3D bioprinting of structural proteins. Biomaterials, 2017, 134: 180-201.
|
31. |
Zhu Wei, Ma Xuanyi, Gou Maling, et al. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol, 2016, 40: 103-112.
|
32. |
El-Serafi A T, El-Serafi I T, Elmasry M, et al. Skin regeneration in three dimensions, current status, challenges and opportunities. Differentiation, 2017, 96: 26-29.
|
33. |
刘南波. 3D打印结构性微环境调控表皮细胞分化为汗腺的效应研究. 广州: 南方医科大学, 2016.
|
34. |
孙凯, 李瑞欣, 范猛, 等. 3D打印丝素蛋白/胶原蛋白支架的制备及性能. 中国组织工程研究, 2017, 21(2): 280-285.
|
35. |
Rodriguez M J, Brown J, Giordano J, et al. Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials, 2017, 117: 105-115.
|
36. |
Pati F, Ha D H, Jang J, et al. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials, 2015, 62: 164-175.
|
37. |
Bootsma K, Fitzgerald M M, Free B, et al. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. J Mech Behav Biomed Mater, 2017, 70: 84-94.
|
38. |
谷龙. 面向皮肤组织工程的水凝胶与细胞打印研究. 杭州: 浙江大学, 2017.
|
39. |
Malyala S K, Kumar Y R, Rao C S P. Organ printing with life cells: a review. Materials Today: Proceedings, 2017, 4(2): 1074-1083.
|
40. |
Rezende R A, Kasyanov V, Mironov V, et al. Organ printing as an information technology. Procedia Engineering, 2015, 110: 151-158.
|
41. |
Jessop Z M, Al-Sabah A, Gardiner M D, et al. 3D bioprinting for reconstructive surgery: Principles, applications and challenges. J Plast Reconstr Aesthet Surg, 2017, 70(9): 1155-1170.
|
42. |
Shafiee A, Atala A. Printing technologies for medical applications. Trends Mol Med, 2016, 22(3): 254-265.
|
43. |
Radenkovic D, Solouk A, Seifalian A. Personalized development of human organs using 3D printing technology. Med Hypotheses, 2016, 87: 30-33.
|
44. |
Mäkitie A A, Salmi M, Lindford A, et al. Three-dimensional printing for restoration of the donor face: A new digital technique tested and used in the first facial allotransplantation patient in Finland. J Plast Reconstr Aesthet Surg, 2016, 69(12): 1648-1652.
|
45. |
Martini R, Balit Y, Barthelat F. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing. Acta Biomater, 2017, 55: 360-372.
|