1. |
Bell W B. The metabolism of tumours. BMJ, 1927, 2(3474): 221-222.
|
2. |
Warburg O. On the origin of cancer cells. Science, 1956, 123(3191): 309-314.
|
3. |
Teslaa T, Teitell M A. Techniques to monitor glycolysis. Methods Enzymol, 2014, 542(98): 91-114.
|
4. |
Cesi G, Walbrecq G, Zimmer A, et al. ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Mol Cancer, 2017, 16(1): 102.
|
5. |
Bohn T, Rapp S, Luther N, et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol, 2018, 19(12): 1319-1329.
|
6. |
Sekine H, Yamamoto M, Motohashi H. Tumors sweeten macrophages with acids. Nat Immunol, 2018, 19(12): 1281-1283.
|
7. |
Xing F, Luan Y, Cai J, et al. The anti-Warburg effect elicited by the cAMP-PGC1α pathway drives differentiation of glioblastoma cells into astrocytes. Cell Rep, 2017, 18(2): 468-481.
|
8. |
陈竺, 孙关林, 陈赛娟, 等. 全反式维A酸诱导分化治疗急性早幼粒细胞白血病的机制研究. 上海第二医科大学学报, 2002, 22(5): S1-S4.
|
9. |
朱新锋. 全反式维甲酸诱导分化肝癌干细胞作用研究. 昆明: 昆明医科大学, 2016.
|
10. |
Molinari F, Pin F, Gorini S A, et al. The mitochondrial metabolic reprogramming agent trimetazidine as an `exercise mimetic' in cachectic C26-bearing mice. J Cachexia Sarcopenia Muscle, 2017, 8(6): 954-973.
|
11. |
LaGory E L, Wu C, Taniguchi C M, et al. Suppression of PGC-1α is critical for reprogramming oxidative metabolism in renal cell carcinoma. Cell Rep, 2015, 12(1): 116-127.
|
12. |
Broecker-Preuss M, Becher-Boveleth N, Bockisch A, et al. Regulation of glucose uptake in lymphoma cell lines by c-MYC and PI3K-dependent signaling pathways and impact of glycolytic pathways on cell viability. J Transl Med, 2017, 15(1): 158.
|
13. |
Eun K, Ham S W, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep, 2017, 50(3): 117-125.
|
14. |
Peng F, Wang J H, Fan W J, et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene, 2018, 37(8): 1062-1074.
|
15. |
Pouyafar A, Heydarabad M Z, Zade J A, et al. Modulation of lipolysis and glycolysis pathways in cancer stem cells changed multipotentiality and differentiation capacity toward endothelial lineage. Cell Biosci, 2019, 9: 30.
|
16. |
Cheng Y, Lu Y, Zhang D, et al. Metastatic cancer cells compensate for low energy supplies in hostile microenvironments with bioenergetic adaptation and metabolic reprogramming. Int J Oncol, 2018, 53(6): 2590-2604.
|
17. |
Zhou Kai, Yao Yueliang, He Zhicheng, et al. VDAC2 interacts with PFKP to regulate glucose metabolism and phenotypic reprogramming of glioma stem cells. Cell Death Dis, 2018, 9(10): 988.
|
18. |
Gao Cuicui, Shen Yao, Jin Fang, et al. Cancer stem cells in small cell lung cancer cell line H446: higher dependency on oxidative phosphorylation and mitochondrial substrate-level phosphorylation than non-stem cancer cells. PLoS One, 2016, 11(5): e0154576.
|
19. |
Farge T, Saland E, de Toni F, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov, 2017, 7(7): 716-735.
|
20. |
De Luca A, Fiorillo M, Peiris-Pagès M, et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget, 2015, 6(17): 14777-14795.
|
21. |
李敏, 王红, 张斯亮, 等. 二甲双胍对甲状腺未分化癌细胞增殖和能量代谢的影响. 现代肿瘤医学, 2016, 24(11): 1694-1698.
|
22. |
Sancho P, Burgos-Ramos E, Tavera A, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab, 2015, 22(4): 590-605.
|
23. |
Zhang Haifeng, Wu Chengsheng, Alshareef A, et al. The PI3K/AKT/c-MYC axis promotes the acquisition of cancer stem-like features in esophageal squamous cell carcinoma. Stem Cells, 2016, 34(8): 2040-2051.
|
24. |
Izumi D, Ishimoto T, Miyake K, et al. Colorectal cancer stem cells acquire chemoresistance through the upregulation of F-box/WD repeat-containing protein 7 and the consequent degradation of c-Myc. Stem Cells, 2017, 35(9): 2027-2036.
|
25. |
孙警辉. 力、化学刺激对肝癌干细胞迁移, 分化行为的影响及其相关分子机理. 重庆: 重庆大学, 2016.
|
26. |
Deng Dong, Xu Chao, Sun Pengcheng, et al. Crystal structure of the human glucose transporter GLUT1. Nature, 2014, 510(7503): 121-125.
|
27. |
Guo Zhengyang, Jia Junqiao, Yao Mingjie, et al. Diacylglycerol kinase gamma predicts prognosis and functions as a tumor suppressor by negatively regulating glucose transporter 1 in hepatocellular carcinoma. Exp Cell Res, 2018, 373(1-2): 211-220.
|
28. |
Wang Yaodong, Li Shengjiao, Liao Jianxing. Inhibition of glucose transporter 1(GLUT1) chemosensitized head and neck cancer cells to cisplatin. Technol Cancer Res Treat, 2013, 12(6): 525-535.
|
29. |
Kurahara H, Maemura K, Mataki Y, et al. Significance of glucose transporter type 1(GLUT-1) expression in the therapeutic strategy for pancreatic ductal adenocarcinoma. Ann Surg Oncol, 2018, 25(5): 1432-1439.
|
30. |
Yakisich J S, Azad N, Kaushik V, et al. The biguanides metformin and buformin in combination with 2-deoxy-glucose or WZB-117 inhibit the viability of highly resistant human lung cancer cells. Stem Cells Int, 2019: 6254269.
|
31. |
Libby C J, ZHANG Sixue, Benavides G A, et al. Identification of compounds that decrease glioblastoma growth and glucose uptake in vitro. ACS Chem Biol, 2018, 13(8): 2048-2057.
|
32. |
de Castro T B, Mota A L, Bordin-Junior N A, et al. Immunohistochemical expression of melatonin receptor MT1 and glucose transporter GLUT1 in human breast cancer. Anticancer Agents Med Chem, 2018, 18(15): 2110-2116.
|
33. |
Wang Yu, Yun Yuyu, Wu Bo, et al. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription. Oncotarget, 2016, 7(30): 47985-47997.
|
34. |
Wu Xueliang, Wang Likun, Yang Dongdong, et al. Effects of glut1 gene silencing on proliferation, differentiation, and apoptosis of colorectal cancer cells by targeting the TGF-β/PI3K-AKT-mTOR signaling pathway. J Cell Biochem, 2018, 119(2): 2356-2367.
|
35. |
Halestrap A P, Price N T. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochemical Journal, 1999, 343(2): 281-299.
|
36. |
Benjamin D, Robay D, Hindupur S K, et al. Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep, 2018, 25(11): 3047-3058.
|
37. |
Miranda-Goncalves V, Granja S, Martinho O, et al. Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas. Oncotarget, 2016, 7(29): 46335-46353.
|
38. |
Romero-Cordoba S L, Rodriguez-Cuevas S A, Bautista-Pina V, et al. Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Sci Rep, 2018, 8(1): 12252.
|
39. |
Takada T, Takata K, Ashihara E. Inhibition of monocarboxylate transporter 1 suppresses the proliferation of glioblastoma stem cells. Journal of Physiological Sciences, 2016, 66(5): 387-396.
|
40. |
Kong S C, Nohr-Nielsen A, Zeeberg K A, et al. Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcinoma cells. Pancreas, 2016, 45(7): 1036-1047.
|
41. |
Van Hée V F, Labar D, Dehon G, et al. Radiosynthesis and validation of (±)-[18F]-3-fluoro-2-hydroxypropionate ([18F]-FLac) as a PET tracer of lactate to monitor MCT1-dependent lactate uptake in tumors. Oncotarget, 2017, 8(15): 24415-24428.
|