1. |
Torre L A, Siegel R L, Jemal A. Lung cancer statistics. Adv Exp Med Biol, 2016, 893: 1-19.
|
2. |
Chen Wanqing, Zheng Rongshou, Baade P D, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
|
3. |
Cao Maomao, Chen Wanqing. Epidemiology of lung cancer in China. Thoracic Cancer, 2019, 10(1): 3-7.
|
4. |
Kermany D S, Goldbaum M, Cai Wenjia, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 2018, 172(5): 1122-1131.
|
5. |
Lecun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput, 1989, 1(4): 541-551.
|
6. |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
7. |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84-90.
|
8. |
Donahue J, Hendricks L A, Rohrbach M A, et al. Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 677-691.
|
9. |
Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with deep neural networks. Med Image Anal, 2017, 35: 18-31.
|
10. |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
|
11. |
Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9.
|
12. |
Setio A A A, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging, 2016, 35(5): 1160-1169.
|
13. |
Setio A A A, Traverso A, De Bel T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal, 2017, 42: 1-13.
|
14. |
苗光, 李朝锋. 二维和 3 维卷积神经网络相结合的 CT 图像肺结节检测方法. 激光与光电子学进展, 2018, 55(5): 135-143.
|
15. |
Han Y, Ye J C. Framing U-net via deep convolutional framelets: application to sparse-view CT. IEEE Trans Med Imaging, 2018, 37(6): 1418-1429.
|
16. |
Ghafoorian M, Karssemeijer N, Heskes T, et al. Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin. Neuroimage Clin, 2017, 14: 391-399.
|
17. |
Dou Qi, Chen Hao, Yu Lequan, et al. Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans Biomed Eng, 2017, 64(7): 1558-1567.
|
18. |
Pezeshk A, Hamidian S, Petrick N, et al. 3D convolutional neural networks for automatic detection of pulmonary nodules in chest CT. IEEE J Biomed Health Inform, 2018: 2168-2194.
|
19. |
Winkels M, Cohen T S. 3D G-CNNs for pulmonary nodule detection. arXiv preprint arXiv: 2018, 1804.04656.
|
20. |
Huang X J, Shan J J, Vaidya V, et al. Lung nodule detection in CT using 3D convolutional neural networks. New York: IEEE, 2017: 379-383.
|
21. |
Anirudh R, Thiagarajan J J, Bremer T, et al. Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data// Medical Imaging 2016: Computer-Aided Diagnosis. San Diego: International Society for Optics and Photonics, 2016, 9785: 978532.
|
22. |
Hamidian S, Sahiner B, Petrick N, et al. 3D convolutional neural network for automatic detection of lung nodules in chest CT// Proceedings of SPIE. Orlando: The International Society for Optical Engineering, 2017, 10134: 1013409.
|
23. |
Roth H R, Oda H, Zhou Xiangrong, et al. An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput Med Imaging Graph, 2018, 66: 90-99.
|
24. |
Gu Yu, Lu Xiaoqi, Yang Lidong, et al. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Comput Biol Med, 2018, 103: 220-231.
|
25. |
Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137-1149.
|
26. |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2014: 580-587.
|
27. |
He K, Gkioxari G, Dollar P, et al. Mask R-CNN// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2961-2969.
|
28. |
Xie Hongtao, Yang Dongbao, Sun Nannan, et al. Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recognit, 2019, 85: 109-119.
|
29. |
Ding J, Li A, Hu Z, et al. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks// International Conference on Medical Image Computing and Computer-Assisted Intervention. Quebec City: ICCAI, 2017: 559-567.
|
30. |
Hua K L, Hsu C H, Hidayati H C, et al. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther, 2015, 8: 2015-2022.
|
31. |
Liu Shuang, Xie Yiting, Jirapatnakul A, et al. Pulmonary nodule classification in lung cancer screening with three-dimensional convolutional neural networks. J Med Imaging, 2017, 4(4): 041308.
|
32. |
Ciompi F, Chung K, Riel S J V, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep, 2017, 7: 46479.
|
33. |
Shen Wei, Zhou Mu, Yang Feng, et al. Multi-scale convolutional neural networks for lung nodule classification. Inf Process Med Imaging, 2015, 24: 588-599.
|
34. |
徐久强, 洪丽萍, 朱宏博, 等. 一种用于肺结节恶性度分类的生成对抗网络. 东北大学学报: 自然科学版, 2018, 39(11): 1556-1561.
|
35. |
Suarez P L, Sappa A D, Vintimilla B X. Infrared image colorization based on a triplet DCGAN architecture// 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 212-217.
|
36. |
Mao Xudong, Li Qing, Xie Haoran, et al. Least squares generative adversarial networks// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2794-2802.
|
37. |
Hussein S, Cao K, Song Q, et al. Risk stratification of lung nodules using 3d CNN-based multi-task learning// International Conference on Information Processing in Medical Imaging. Boone: IPMI, 2017: 249-260.
|
38. |
Zamir A R, Sax A, Shen W, et al. Taskonomy: Disentangling task transfer learning// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3712-3722.
|
39. |
陈诗慧, 刘维湘, 秦璟, 等. 基于深度学习和医学图像的癌症计算机辅助诊断研究进展. 生物医学工程学杂志, 2017, 34(2): 314-319.
|
40. |
Yuan Xiaofeng, Huang Biao, Wang Yalin, et al. Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE. IEEE Trans Industr Inform, 2018, 14(7): 3235-3243.
|
41. |
Lu Na, Li Tengfei, Ren Xiaodong, et al. A deep learning scheme for motor imagery classification based on restricted boltzmann machines. IEEE Trans Neur Syst Rehabil Eng, 2017, 25(6): 566-576.
|