1. |
Kumar A, Wang Xiang, Nune K C, et al. Biodegradable hydrogel-based biomaterials with high absorbent properties for non-adherent wound dressing. Int Wound J, 2017, 14(6): 1076-1087.
|
2. |
Aljghami M E, Saboor S, Amini-Nik S. Emerging innovative wound dressings. Ann Biomed Eng, 2019, 47(3): 659-675.
|
3. |
Dhivya S, Padma V V, Santhini E. Wound dressings-a review. Biomedicine (Taipei), 2015, 5(4): 24-28.
|
4. |
Francis N L, Hunger P M, Donius A E, et al. An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering. J Biomed Mater Res A, 2013, 101(12): 3493-3503.
|
5. |
Aderibigbe B A, Buyana B. Alginate in wound dressings. Pharmaceutics, 2018, 10(2): 1-19.
|
6. |
Imran F H, Karim R, Maat N H. Managing burn wounds with SMARTPORE Technology polyurethane foam: two case reports. J Med Case Rep, 2016, 10(1): 120.
|
7. |
Ashfaq M, Verma N, Khan S. Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Mater Sci Eng C Mater Biol Appl, 2016, 59: 938-947.
|
8. |
Mir M, Ali M N, Barakullah A, et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater, 2018, 7(1): 1-21.
|
9. |
Sood A, Granick M S, Tomaselli N L. Wound dressings and comparative effectiveness data. Adv Wound Care (New Rochelle), 2014, 3(8): 511-529.
|
10. |
Zhan Rixing, Wang Fan, Wu Ying, et al. Nitric oxide induces epidermal stem cell de-adhesion by targeting integrin beta 1 and Talin via the cGMP signalling pathway. Nitric Oxide-Biology and Chemistry, 2018, 78: 1-10.
|
11. |
Fitzpatrick E, Holland O J, Vanderlelie J J. Ozone therapy for the treatment of chronic wounds: A systematic review. Int Wound J, 2018, 15(4): 633-644.
|
12. |
Cameron S J, Hosseinian F, Willmore W G. A current overview of the biological and cellular effects of nanosilver. Int J Mol Sci, 2018, 19(7). pii: E2030. DOI: 10.3390/ijms19072030.
|
13. |
Sasaki Y, Sathi G A, Yamamoto O. In vivo evaluation of wound healing property of zinc smectite using a rat model. J Ceram Soc Jpn, 2016, 124(12): 1199-1204.
|
14. |
Yan M, Hu Y G, Yao M, et al. GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing. Wound Repair Regen, 2017, 25(6): 933-943.
|
15. |
Schenck K, Schreurs O, Hayashi K, et al. The role of nerve growth factor (NGF) and its precursor forms in oral wound healing. Int J Mol Sci, 2017, 18(2): 12.
|
16. |
Chen Jicai, Lin Beibei, Hu Houwen, et al. NGF accelerates cutaneous wound healing by promoting the migration of dermal fibroblasts via the PI3K/Akt-Rac1-JNK and ERK pathways. Biomed Res Int, 2014: 547187.
|
17. |
Patrulea V, Ostafe V, Borchard G, et al. Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm, 2015, 97(B, SI): 417-426.
|
18. |
Tran C D, Duri S, Harkins A L. Recyclable synthesis, characterization, and antimicrobial activity of chitosan-based polysaccharide composite materials. J Biomed Mater Res A, 2013, 101(8): 2248-2257.
|
19. |
Ying H Y, Zhou J, Wang M Y, et al. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mat Sci Eng C, 2019, 101: 487-498.
|
20. |
Abinaya M, Gayathri M. Biodegradable collagen from Scomberomorus lineolatus skin for wound healing dressings and its application on antibiofilm properties. J Cell Biochem, 2019, 120(9): 15572-15584.
|
21. |
Chattopadhyay S, Raines R T. Collagen-based biomaterials for wound healing. Biopolymers, 2014, 101(8): 821-833.
|
22. |
Stojkovska J, Djurdjevic Z, Jancic I, et al. Comparative in vivo evaluation of novel formulations based on alginate and silver nanoparticles for wound treatments. J Biomater Appl, 2018, 32(9): 1197-1211.
|
23. |
Thakur A, Monga S, Wanchoo R K. Sorption and drug release studies from semi-interpenetrating polymer networks of chitosan and xanthan gum. Chem Biochem Eng Q, 2014, 28(1): 105-115.
|
24. |
Argin S, Kofinas P, Lo Y M. The cell release kinetics and the swelling behavior of physically crosslinked xanthan-chitosan hydrogels in simulated gastrointestinal conditions. Food Hydrocoll, 2014, 40: 138-144.
|
25. |
Lopes S A, Veiga I G, Krause Bierhalz A C K, et al. Physicochemical properties and release behavior of indomethacin-loaded polysaccharide membranes. Int J Polym Mater Polym Biomater, 2018, 68(16): 956-964.
|
26. |
Zhou S, Hokugo A, McClendon M, et al. Bioactive peptide amphiphile nanofiber gels enhance burn wound healing. Burns, 2019, 45(5): 1112-1121.
|
27. |
Hong Lei, Shen Meiting, Fang Jiaxi, et al. Hyaluronic acid (HA)-based hydrogels for full-thickness wound repairing and skin regeneration. J Mater Sci Mater Med, 2018, 29(9): 150.
|
28. |
Priya S G, Gupta A, Jain E, et al. Bilayer cryogel wound dressing and skin regeneration grafts for the treatment of acute skin wounds. ACS Appl Mater Interfaces, 2016, 8(24): 15145-15159.
|
29. |
Fluke L M, Restrepo R D, Patel S, et al. Strength and histology of a nanofiber scaffold in rats. J Surg Res, 2016, 205(2): 432-439.
|
30. |
Lukanina K I, Grigoriev T E, Krasheninnikov S V, et al. Multi-hierarchical tissue-engineering ECM-like scaffolds based on cellulose acetate with collagen and chitosan fillers. Carbohydr Polym, 2018, 191: 119-126.
|
31. |
Namazi M R, Fallahzadeh M K, Schwartz R A. Strategies for prevention of scars: what can we learn from fetal skin?. Int J Dermatol, 2011, 50(1): 85-93.
|
32. |
Chantre C O, Campbell P H, Golecki H M, et al. Production-scale fibronectin nanofibers promote wound closure and tissue repair in a dermal mouse model. Biomaterials, 2018, 166: 96-108.
|
33. |
Tarassoli S P, Jessop Z M, Al-Sabah A, et al. Skin tissue engineering using 3D bioprinting: An evolving research field. J Plast Reconstr Aesthet Surg, 2018, 71(5): 615-623.
|
34. |
Zhu Zhijie, Guo Shuangzhuang, Hirdler T, et al. 3D printed functional and biological materials on moving freeform surfaces. Adv Mater, 2018, 30(23): e1707495.
|
35. |
Kim B S, Kwon Y W, Kong J S, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials, 2018, 168: 38-53.
|
36. |
Zepon K M, Martins M M, Marques M S, et al. Smart wound dressing based on kappa-carrageenan/locust bean gum/cranberry extract for monitoring bacterial infections. Carbohydr Polym, 2019, 206: 362-370.
|
37. |
Mclister A, Mathur A, Davis J. Wound diagnostics: Deploying electroanalytical strategies for point of care sensors and smart dressings. Curr Opin Electrochem, 2017, 3(1): 40-45.
|
38. |
Pinho E, Machado S, Soares G. Smart hydrogel for the pH-selective drug delivery of antimicrobial compounds. Macromol Symp, 2019, 385(1): 7.
|
39. |
韩波, 李跃军. 智能无线传感敷料. 中华整形外科杂志, 2016, 32(5): 393-395.
|
40. |
Hrga I. Wearable technologies: between fashion, art, performance, and science (Fiction). Tekstilec, 2019, 62(2): 124-136.
|
41. |
Feng Yan, Chen Wenwen, Jia Yuexiao, et al. N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria. Nanoscale, 2016, 8(27): 13223-13227.
|
42. |
Lu Bitao, Lu Fei, Ran Luoxiao, et al. Self-assembly of natural protein and imidazole molecules on gold nanoparticles: Applications in wound healing against multi-drug resistant bacteria. Int J Biol Macromol, 2018, 119: 505-516.
|
43. |
Noori S, Kokabi M, Hassan Z M. Poly(vinyl alcohol)/chitosan/honey/clay responsive nanocomposite hydrogel wound dressing. J Appl Polym Sci, 2018, 135(21): 12.
|
44. |
Yang Meirong, Wang Yejing, Cai Rui, et al. Preparation and characterization of silk sericin/glycerol films coated with silver nanoparticles for antibacterial application. Sci Adv Mater, 2018, 10(6): 761-768.
|
45. |
Shi Rui, Niu Yuzhao, Gong Min, et al. Antimicrobial gelatin-based elastomer nanocomposite membrane loaded with ciprofloxacin and polymyxin B sulfate in halloysite nanotubes for wound dressing. Mater Sci Eng C Mater Biol Appl, 2018, 87: 128-138.
|